View Javadoc

1   /*
2    * Copyright 2012 The Netty Project
3    *
4    * The Netty Project licenses this file to you under the Apache License,
5    * version 2.0 (the "License"); you may not use this file except in compliance
6    * with the License. You may obtain a copy of the License at:
7    *
8    *   http://www.apache.org/licenses/LICENSE-2.0
9    *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12   * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13   * License for the specific language governing permissions and limitations
14   * under the License.
15   */
16  /*
17   * Written by Doug Lea with assistance from members of JCP JSR-166
18   * Expert Group and released to the public domain, as explained at
19   * http://creativecommons.org/licenses/publicdomain
20   */
21  package org.jboss.netty.util.internal;
22  
23  import java.util.AbstractCollection;
24  import java.util.AbstractMap;
25  import java.util.AbstractSet;
26  import java.util.Collection;
27  import java.util.ConcurrentModificationException;
28  import java.util.Enumeration;
29  import java.util.Hashtable;
30  import java.util.Iterator;
31  import java.util.Map;
32  import java.util.NoSuchElementException;
33  import java.util.Set;
34  import java.util.concurrent.ConcurrentMap;
35  import java.util.concurrent.locks.ReentrantLock;
36  
37  
38  /**
39   * An alternative {@link ConcurrentMap} implementation which is similar to
40   * {@link java.util.concurrent.ConcurrentHashMap}.
41   * @param <K> the type of keys maintained by this map
42   * @param <V> the type of mapped values
43   */
44  public final class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
45          implements ConcurrentMap<K, V> {
46  
47      /**
48       * The default initial capacity for this table, used when not otherwise
49       * specified in a constructor.
50       */
51      static final int DEFAULT_INITIAL_CAPACITY = 16;
52  
53      /**
54       * The default load factor for this table, used when not otherwise specified
55       * in a constructor.
56       */
57      static final float DEFAULT_LOAD_FACTOR = 0.75f;
58  
59      /**
60       * The default concurrency level for this table, used when not otherwise
61       * specified in a constructor.
62       */
63      static final int DEFAULT_CONCURRENCY_LEVEL = 16;
64  
65      /**
66       * The maximum capacity, used if a higher value is implicitly specified by
67       * either of the constructors with arguments.  MUST be a power of two
68       * &lt;= 1&lt;&lt;30 to ensure that entries are indexable using integers.
69       */
70      static final int MAXIMUM_CAPACITY = 1 << 30;
71  
72      /**
73       * The maximum number of segments to allow; used to bound constructor
74       * arguments.
75       */
76      static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
77  
78      /**
79       * Number of unsynchronized retries in size and containsValue methods before
80       * resorting to locking. This is used to avoid unbounded retries if tables
81       * undergo continuous modification which would make it impossible to obtain
82       * an accurate result.
83       */
84      static final int RETRIES_BEFORE_LOCK = 2;
85  
86      /* ---------------- Fields -------------- */
87  
88      /**
89       * Mask value for indexing into segments. The upper bits of a key's hash
90       * code are used to choose the segment.
91       */
92      final int segmentMask;
93  
94      /**
95       * Shift value for indexing within segments.
96       */
97      final int segmentShift;
98  
99      /**
100      * The segments, each of which is a specialized hash table
101      */
102     final Segment<K, V>[] segments;
103 
104     Set<K> keySet;
105     Set<Map.Entry<K, V>> entrySet;
106     Collection<V> values;
107 
108     /* ---------------- Small Utilities -------------- */
109 
110     /**
111      * Applies a supplemental hash function to a given hashCode, which defends
112      * against poor quality hash functions.  This is critical because
113      * ConcurrentReferenceHashMap uses power-of-two length hash tables, that
114      * otherwise encounter collisions for hashCodes that do not differ in lower
115      * or upper bits.
116      */
117     private static int hash(int h) {
118         // Spread bits to regularize both segment and index locations,
119         // using variant of single-word Wang/Jenkins hash.
120         h += h << 15 ^ 0xffffcd7d;
121         h ^= h >>> 10;
122         h += h << 3;
123         h ^= h >>> 6;
124         h += (h << 2) + (h << 14);
125         return h ^ h >>> 16;
126     }
127 
128     /**
129      * Returns the segment that should be used for key with given hash.
130      *
131      * @param hash the hash code for the key
132      * @return the segment
133      */
134     Segment<K, V> segmentFor(int hash) {
135         return segments[hash >>> segmentShift & segmentMask];
136     }
137 
138     private static int hashOf(Object key) {
139         return hash(key.hashCode());
140     }
141 
142     /**
143      * ConcurrentReferenceHashMap list entry. Note that this is never exported
144      * out as a user-visible Map.Entry.
145      *
146      * Because the value field is volatile, not final, it is legal wrt
147      * the Java Memory Model for an unsynchronized reader to see null
148      * instead of initial value when read via a data race.  Although a
149      * reordering leading to this is not likely to ever actually
150      * occur, the Segment.readValueUnderLock method is used as a
151      * backup in case a null (pre-initialized) value is ever seen in
152      * an unsynchronized access method.
153      */
154     static final class HashEntry<K, V> {
155         final Object key;
156         final int hash;
157         volatile Object value;
158         final HashEntry<K, V> next;
159 
160         HashEntry(
161                 K key, int hash, HashEntry<K, V> next, V value) {
162             this.hash = hash;
163             this.next = next;
164             this.key = key;
165             this.value = value;
166         }
167 
168         @SuppressWarnings("unchecked")
169         K key() {
170             return (K) key;
171         }
172 
173         @SuppressWarnings("unchecked")
174         V value() {
175             return (V) value;
176         }
177 
178         void setValue(V value) {
179             this.value = value;
180         }
181 
182         @SuppressWarnings("unchecked")
183         static <K, V> HashEntry<K, V>[] newArray(int i) {
184             return new HashEntry[i];
185         }
186     }
187 
188     /**
189      * Segments are specialized versions of hash tables.  This subclasses from
190      * ReentrantLock opportunistically, just to simplify some locking and avoid
191      * separate construction.
192      */
193     static final class Segment<K, V> extends ReentrantLock {
194         /*
195          * Segments maintain a table of entry lists that are ALWAYS kept in a
196          * consistent state, so can be read without locking. Next fields of
197          * nodes are immutable (final).  All list additions are performed at the
198          * front of each bin. This makes it easy to check changes, and also fast
199          * to traverse. When nodes would otherwise be changed, new nodes are
200          * created to replace them. This works well for hash tables since the
201          * bin lists tend to be short. (The average length is less than two for
202          * the default load factor threshold.)
203          *
204          * Read operations can thus proceed without locking, but rely on
205          * selected uses of volatiles to ensure that completed write operations
206          * performed by other threads are noticed. For most purposes, the
207          * "count" field, tracking the number of elements, serves as that
208          * volatile variable ensuring visibility.  This is convenient because
209          * this field needs to be read in many read operations anyway:
210          *
211          *   - All (unsynchronized) read operations must first read the
212          *     "count" field, and should not look at table entries if
213          *     it is 0.
214          *
215          *   - All (synchronized) write operations should write to
216          *     the "count" field after structurally changing any bin.
217          *     The operations must not take any action that could even
218          *     momentarily cause a concurrent read operation to see
219          *     inconsistent data. This is made easier by the nature of
220          *     the read operations in Map. For example, no operation
221          *     can reveal that the table has grown but the threshold
222          *     has not yet been updated, so there are no atomicity
223          *     requirements for this with respect to reads.
224          *
225          * As a guide, all critical volatile reads and writes to the count field
226          * are marked in code comments.
227          */
228 
229         private static final long serialVersionUID = -2001752926705396395L;
230 
231         /**
232          * The number of elements in this segment's region.
233          */
234         transient volatile int count;
235 
236         /**
237          * Number of updates that alter the size of the table. This is used
238          * during bulk-read methods to make sure they see a consistent snapshot:
239          * If modCounts change during a traversal of segments computing size or
240          * checking containsValue, then we might have an inconsistent view of
241          * state so (usually) must retry.
242          */
243         int modCount;
244 
245         /**
246          * The table is rehashed when its size exceeds this threshold.
247          * (The value of this field is always <tt>(capacity * loadFactor)</tt>.)
248          */
249         int threshold;
250 
251         /**
252          * The per-segment table.
253          */
254         transient volatile HashEntry<K, V>[] table;
255 
256         /**
257          * The load factor for the hash table.  Even though this value is same
258          * for all segments, it is replicated to avoid needing links to outer
259          * object.
260          */
261         final float loadFactor;
262 
263         Segment(int initialCapacity, float lf) {
264             loadFactor = lf;
265             setTable(HashEntry.<K, V>newArray(initialCapacity));
266         }
267 
268         @SuppressWarnings("unchecked")
269         static <K, V> Segment<K, V>[] newArray(int i) {
270             return new Segment[i];
271         }
272 
273         private static boolean keyEq(Object src, Object dest) {
274             return src.equals(dest);
275         }
276 
277         /**
278          * Sets table to new HashEntry array. Call only while holding lock or in
279          * constructor.
280          */
281         void setTable(HashEntry<K, V>[] newTable) {
282             threshold = (int) (newTable.length * loadFactor);
283             table = newTable;
284         }
285 
286         /**
287          * Returns properly casted first entry of bin for given hash.
288          */
289         HashEntry<K, V> getFirst(int hash) {
290             HashEntry<K, V>[] tab = table;
291             return tab[hash & tab.length - 1];
292         }
293 
294         HashEntry<K, V> newHashEntry(
295                 K key, int hash, HashEntry<K, V> next, V value) {
296             return new HashEntry<K, V>(key, hash, next, value);
297         }
298 
299         /**
300          * Reads value field of an entry under lock. Called if value field ever
301          * appears to be null. This is possible only if a compiler happens to
302          * reorder a HashEntry initialization with its table assignment, which
303          * is legal under memory model but is not known to ever occur.
304          */
305         V readValueUnderLock(HashEntry<K, V> e) {
306             lock();
307             try {
308                 return e.value();
309             } finally {
310                 unlock();
311             }
312         }
313 
314         /* Specialized implementations of map methods */
315 
316         V get(Object key, int hash) {
317             if (count != 0) { // read-volatile
318                 HashEntry<K, V> e = getFirst(hash);
319                 while (e != null) {
320                     if (e.hash == hash && keyEq(key, e.key())) {
321                         V opaque = e.value();
322                         if (opaque != null) {
323                             return opaque;
324                         }
325 
326                         return readValueUnderLock(e); // recheck
327                     }
328                     e = e.next;
329                 }
330             }
331             return null;
332         }
333 
334         boolean containsKey(Object key, int hash) {
335             if (count != 0) { // read-volatile
336                 HashEntry<K, V> e = getFirst(hash);
337                 while (e != null) {
338                     if (e.hash == hash && keyEq(key, e.key())) {
339                         return true;
340                     }
341                     e = e.next;
342                 }
343             }
344             return false;
345         }
346 
347         boolean containsValue(Object value) {
348             if (count != 0) { // read-volatile
349                 for (HashEntry<K, V> e: table) {
350                     for (; e != null; e = e.next) {
351                         V opaque = e.value();
352                         V v;
353 
354                         if (opaque == null) {
355                             v = readValueUnderLock(e); // recheck
356                         } else {
357                             v = opaque;
358                         }
359 
360                         if (value.equals(v)) {
361                             return true;
362                         }
363                     }
364                 }
365             }
366             return false;
367         }
368 
369         boolean replace(K key, int hash, V oldValue, V newValue) {
370             lock();
371             try {
372                 HashEntry<K, V> e = getFirst(hash);
373                 while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
374                     e = e.next;
375                 }
376 
377                 boolean replaced = false;
378                 if (e != null && oldValue.equals(e.value())) {
379                     replaced = true;
380                     e.setValue(newValue);
381                 }
382                 return replaced;
383             } finally {
384                 unlock();
385             }
386         }
387 
388         V replace(K key, int hash, V newValue) {
389             lock();
390             try {
391                 HashEntry<K, V> e = getFirst(hash);
392                 while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
393                     e = e.next;
394                 }
395 
396                 V oldValue = null;
397                 if (e != null) {
398                     oldValue = e.value();
399                     e.setValue(newValue);
400                 }
401                 return oldValue;
402             } finally {
403                 unlock();
404             }
405         }
406 
407         V put(K key, int hash, V value, boolean onlyIfAbsent) {
408             lock();
409             try {
410                 int c = count;
411                 if (c ++ > threshold) { // ensure capacity
412                     int reduced = rehash();
413                     if (reduced > 0) {
414                         count = (c -= reduced) - 1; // write-volatile
415                     }
416                 }
417 
418                 HashEntry<K, V>[] tab = table;
419                 int index = hash & tab.length - 1;
420                 HashEntry<K, V> first = tab[index];
421                 HashEntry<K, V> e = first;
422                 while (e != null && (e.hash != hash || !keyEq(key, e.key()))) {
423                     e = e.next;
424                 }
425 
426                 V oldValue;
427                 if (e != null) {
428                     oldValue = e.value();
429                     if (!onlyIfAbsent) {
430                         e.setValue(value);
431                     }
432                 } else {
433                     oldValue = null;
434                     ++ modCount;
435                     tab[index] = newHashEntry(key, hash, first, value);
436                     count = c; // write-volatile
437                 }
438                 return oldValue;
439             } finally {
440                 unlock();
441             }
442         }
443 
444         int rehash() {
445             HashEntry<K, V>[] oldTable = table;
446             int oldCapacity = oldTable.length;
447             if (oldCapacity >= MAXIMUM_CAPACITY) {
448                 return 0;
449             }
450 
451             /*
452              * Reclassify nodes in each list to new Map.  Because we are using
453              * power-of-two expansion, the elements from each bin must either
454              * stay at same index, or move with a power of two offset. We
455              * eliminate unnecessary node creation by catching cases where old
456              * nodes can be reused because their next fields won't change.
457              * Statistically, at the default threshold, only about one-sixth of
458              * them need cloning when a table doubles. The nodes they replace
459              * will be garbage collectable as soon as they are no longer
460              * referenced by any reader thread that may be in the midst of
461              * traversing table right now.
462              */
463 
464             HashEntry<K, V>[] newTable = HashEntry.newArray(oldCapacity << 1);
465             threshold = (int) (newTable.length * loadFactor);
466             int sizeMask = newTable.length - 1;
467             int reduce = 0;
468             for (HashEntry<K, V> e: oldTable) {
469                 // We need to guarantee that any existing reads of old Map can
470                 // proceed. So we cannot yet null out each bin.
471                 if (e != null) {
472                     HashEntry<K, V> next = e.next;
473                     int idx = e.hash & sizeMask;
474 
475                     // Single node on list
476                     if (next == null) {
477                         newTable[idx] = e;
478                     } else {
479                         // Reuse trailing consecutive sequence at same slot
480                         HashEntry<K, V> lastRun = e;
481                         int lastIdx = idx;
482                         for (HashEntry<K, V> last = next; last != null; last = last.next) {
483                             int k = last.hash & sizeMask;
484                             if (k != lastIdx) {
485                                 lastIdx = k;
486                                 lastRun = last;
487                             }
488                         }
489                         newTable[lastIdx] = lastRun;
490                         // Clone all remaining nodes
491                         for (HashEntry<K, V> p = e; p != lastRun; p = p.next) {
492                             // Skip GC'd weak references
493                             K key = p.key();
494                             if (key == null) {
495                                 reduce++;
496                                 continue;
497                             }
498                             int k = p.hash & sizeMask;
499                             HashEntry<K, V> n = newTable[k];
500                             newTable[k] = newHashEntry(key, p.hash, n, p.value());
501                         }
502                     }
503                 }
504             }
505             table = newTable;
506             return reduce;
507         }
508 
509         /**
510          * Remove; match on key only if value null, else match both.
511          */
512         V remove(Object key, int hash, Object value, boolean refRemove) {
513             lock();
514             try {
515                 int c = count - 1;
516                 HashEntry<K, V>[] tab = table;
517                 int index = hash & tab.length - 1;
518                 HashEntry<K, V> first = tab[index];
519                 HashEntry<K, V> e = first;
520                 // a reference remove operation compares the Reference instance
521                 while (e != null && key != e.key &&
522                         (refRemove || hash != e.hash || !keyEq(key, e.key()))) {
523                     e = e.next;
524                 }
525 
526                 V oldValue = null;
527                 if (e != null) {
528                     V v = e.value();
529                     if (value == null || value.equals(v)) {
530                         oldValue = v;
531                         // All entries following removed node can stay in list,
532                         // but all preceding ones need to be cloned.
533                         ++ modCount;
534                         HashEntry<K, V> newFirst = e.next;
535                         for (HashEntry<K, V> p = first; p != e; p = p.next) {
536                             K pKey = p.key();
537                             if (pKey == null) { // Skip GC'd keys
538                                 c --;
539                                 continue;
540                             }
541 
542                             newFirst = newHashEntry(
543                                     pKey, p.hash, newFirst, p.value());
544                         }
545                         tab[index] = newFirst;
546                         count = c; // write-volatile
547                     }
548                 }
549                 return oldValue;
550             } finally {
551                 unlock();
552             }
553         }
554 
555         void clear() {
556             if (count != 0) {
557                 lock();
558                 try {
559                     HashEntry<K, V>[] tab = table;
560                     for (int i = 0; i < tab.length; i ++) {
561                         tab[i] = null;
562                     }
563                     ++ modCount;
564                     count = 0; // write-volatile
565                 } finally {
566                     unlock();
567                 }
568             }
569         }
570     }
571 
572     /* ---------------- Public operations -------------- */
573 
574     /**
575      * Creates a new, empty map with the specified initial capacity, load factor
576      * and concurrency level.
577      *
578      * @param initialCapacity the initial capacity. The implementation performs
579      *                        internal sizing to accommodate this many elements.
580      * @param loadFactor the load factor threshold, used to control resizing.
581      *                   Resizing may be performed when the average number of
582      *                   elements per bin exceeds this threshold.
583      * @param concurrencyLevel the estimated number of concurrently updating
584      *                         threads. The implementation performs internal
585      *                         sizing to try to accommodate this many threads.
586      * @throws IllegalArgumentException if the initial capacity is negative or
587      *                                  the load factor or concurrencyLevel are
588      *                                  nonpositive.
589      */
590     public ConcurrentHashMap(
591             int initialCapacity, float loadFactor,
592             int concurrencyLevel) {
593         if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0) {
594             throw new IllegalArgumentException();
595         }
596 
597         if (concurrencyLevel > MAX_SEGMENTS) {
598             concurrencyLevel = MAX_SEGMENTS;
599         }
600 
601         // Find power-of-two sizes best matching arguments
602         int sshift = 0;
603         int ssize = 1;
604         while (ssize < concurrencyLevel) {
605             ++ sshift;
606             ssize <<= 1;
607         }
608         segmentShift = 32 - sshift;
609         segmentMask = ssize - 1;
610         segments = Segment.newArray(ssize);
611 
612         if (initialCapacity > MAXIMUM_CAPACITY) {
613             initialCapacity = MAXIMUM_CAPACITY;
614         }
615         int c = initialCapacity / ssize;
616         if (c * ssize < initialCapacity) {
617             ++ c;
618         }
619         int cap = 1;
620         while (cap < c) {
621             cap <<= 1;
622         }
623 
624         for (int i = 0; i < segments.length; ++ i) {
625             segments[i] = new Segment<K, V>(cap, loadFactor);
626         }
627     }
628 
629 
630     /**
631      * Creates a new, empty map with the specified initial capacity and load
632      * factor and with the default reference types (weak keys, strong values),
633      * and concurrencyLevel (16).
634      *
635      * @param initialCapacity The implementation performs internal sizing to
636      *                        accommodate this many elements.
637      * @param loadFactor the load factor threshold, used to control resizing.
638      *                   Resizing may be performed when the average number of
639      *                   elements per bin exceeds this threshold.
640      * @throws IllegalArgumentException if the initial capacity of elements is
641      *                                  negative or the load factor is
642      *                                  nonpositive
643      */
644     public ConcurrentHashMap(int initialCapacity, float loadFactor) {
645         this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
646     }
647 
648     /**
649      * Creates a new, empty map with the specified initial capacity, and with
650      * default reference types (weak keys, strong values), load factor (0.75)
651      * and concurrencyLevel (16).
652      *
653      * @param initialCapacity the initial capacity. The implementation performs
654      *                        internal sizing to accommodate this many elements.
655      * @throws IllegalArgumentException if the initial capacity of elements is
656      *                                  negative.
657      */
658     public ConcurrentHashMap(int initialCapacity) {
659         this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
660     }
661 
662     /**
663      * Creates a new, empty map with a default initial capacity (16), reference
664      * types (weak keys, strong values), default load factor (0.75) and
665      * concurrencyLevel (16).
666      */
667     public ConcurrentHashMap() {
668         this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
669     }
670 
671     /**
672      * Creates a new map with the same mappings as the given map. The map is
673      * created with a capacity of 1.5 times the number of mappings in the given
674      * map or 16 (whichever is greater), and a default load factor (0.75) and
675      * concurrencyLevel (16).
676      *
677      * @param m the map
678      */
679     public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
680         this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
681              DEFAULT_INITIAL_CAPACITY), DEFAULT_LOAD_FACTOR,
682              DEFAULT_CONCURRENCY_LEVEL);
683         putAll(m);
684     }
685 
686     /**
687      * Returns <tt>true</tt> if this map contains no key-value mappings.
688      *
689      * @return <tt>true</tt> if this map contains no key-value mappings
690      */
691     @Override
692     public boolean isEmpty() {
693         final Segment<K, V>[] segments = this.segments;
694         /*
695          * We keep track of per-segment modCounts to avoid ABA problems in which
696          * an element in one segment was added and in another removed during
697          * traversal, in which case the table was never actually empty at any
698          * point. Note the similar use of modCounts in the size() and
699          * containsValue() methods, which are the only other methods also
700          * susceptible to ABA problems.
701          */
702         int[] mc = new int[segments.length];
703         int mcsum = 0;
704         for (int i = 0; i < segments.length; ++ i) {
705             if (segments[i].count != 0) {
706                 return false;
707             } else {
708                 mcsum += mc[i] = segments[i].modCount;
709             }
710         }
711         // If mcsum happens to be zero, then we know we got a snapshot before
712         // any modifications at all were made.  This is probably common enough
713         // to bother tracking.
714         if (mcsum != 0) {
715             for (int i = 0; i < segments.length; ++ i) {
716                 if (segments[i].count != 0 || mc[i] != segments[i].modCount) {
717                     return false;
718                 }
719             }
720         }
721         return true;
722     }
723 
724     /**
725      * Returns the number of key-value mappings in this map. If the map contains
726      * more than <tt>Integer.MAX_VALUE</tt> elements, returns
727      * <tt>Integer.MAX_VALUE</tt>.
728      *
729      * @return the number of key-value mappings in this map
730      */
731     @Override
732     public int size() {
733         final Segment<K, V>[] segments = this.segments;
734         long sum = 0;
735         long check = 0;
736         int[] mc = new int[segments.length];
737         // Try a few times to get accurate count. On failure due to continuous
738         // async changes in table, resort to locking.
739         for (int k = 0; k < RETRIES_BEFORE_LOCK; ++ k) {
740             check = 0;
741             sum = 0;
742             int mcsum = 0;
743             for (int i = 0; i < segments.length; ++ i) {
744                 sum += segments[i].count;
745                 mcsum += mc[i] = segments[i].modCount;
746             }
747             if (mcsum != 0) {
748                 for (int i = 0; i < segments.length; ++ i) {
749                     check += segments[i].count;
750                     if (mc[i] != segments[i].modCount) {
751                         check = -1; // force retry
752                         break;
753                     }
754                 }
755             }
756             if (check == sum) {
757                 break;
758             }
759         }
760         if (check != sum) { // Resort to locking all segments
761             sum = 0;
762             for (Segment<K, V> segment: segments) {
763                 segment.lock();
764             }
765             for (Segment<K, V> segment: segments) {
766                 sum += segment.count;
767             }
768             for (Segment<K, V> segment: segments) {
769                 segment.unlock();
770             }
771         }
772         if (sum > Integer.MAX_VALUE) {
773             return Integer.MAX_VALUE;
774         } else {
775             return (int) sum;
776         }
777     }
778 
779     /**
780      * Returns the value to which the specified key is mapped, or {@code null}
781      * if this map contains no mapping for the key.
782      *
783      * <p>More formally, if this map contains a mapping from a key {@code k} to
784      * a value {@code v} such that {@code key.equals(k)}, then this method
785      * returns {@code v}; otherwise it returns {@code null}.  (There can be at
786      * most one such mapping.)
787      *
788      * @throws NullPointerException if the specified key is null
789      */
790     @Override
791     public V get(Object key) {
792         int hash = hashOf(key);
793         return segmentFor(hash).get(key, hash);
794     }
795 
796     /**
797      * Tests if the specified object is a key in this table.
798      *
799      * @param  key   possible key
800      * @return <tt>true</tt> if and only if the specified object is a key in
801      *         this table, as determined by the <tt>equals</tt> method;
802      *         <tt>false</tt> otherwise.
803      * @throws NullPointerException if the specified key is null
804      */
805     @Override
806     public boolean containsKey(Object key) {
807         int hash = hashOf(key);
808         return segmentFor(hash).containsKey(key, hash);
809     }
810 
811     /**
812      * Returns <tt>true</tt> if this map maps one or more keys to the specified
813      * value. Note: This method requires a full internal traversal of the hash
814      * table, and so is much slower than method <tt>containsKey</tt>.
815      *
816      * @param value value whose presence in this map is to be tested
817      * @return <tt>true</tt> if this map maps one or more keys to the specified
818      *         value
819      * @throws NullPointerException if the specified value is null
820      */
821 
822     @Override
823     public boolean containsValue(Object value) {
824         if (value == null) {
825             throw new NullPointerException();
826         }
827 
828         // See explanation of modCount use above
829 
830         final Segment<K, V>[] segments = this.segments;
831         int[] mc = new int[segments.length];
832 
833         // Try a few times without locking
834         for (int k = 0; k < RETRIES_BEFORE_LOCK; ++ k) {
835             int mcsum = 0;
836             for (int i = 0; i < segments.length; ++ i) {
837                 mcsum += mc[i] = segments[i].modCount;
838                 if (segments[i].containsValue(value)) {
839                     return true;
840                 }
841             }
842             boolean cleanSweep = true;
843             if (mcsum != 0) {
844                 for (int i = 0; i < segments.length; ++ i) {
845                     if (mc[i] != segments[i].modCount) {
846                         cleanSweep = false;
847                         break;
848                     }
849                 }
850             }
851             if (cleanSweep) {
852                 return false;
853             }
854         }
855         // Resort to locking all segments
856         for (Segment<K, V> segment: segments) {
857             segment.lock();
858         }
859         boolean found = false;
860         try {
861             for (Segment<K, V> segment: segments) {
862                 if (segment.containsValue(value)) {
863                     found = true;
864                     break;
865                 }
866             }
867         } finally {
868             for (Segment<K, V> segment: segments) {
869                 segment.unlock();
870             }
871         }
872         return found;
873     }
874 
875     /**
876      * Legacy method testing if some key maps into the specified value in this
877      * table.  This method is identical in functionality to
878      * {@link #containsValue}, and exists solely to ensure full compatibility
879      * with class {@link Hashtable}, which supported this method prior to
880      * introduction of the Java Collections framework.
881      *
882      * @param  value a value to search for
883      * @return <tt>true</tt> if and only if some key maps to the <tt>value</tt>
884      *         argument in this table as determined by the <tt>equals</tt>
885      *         method; <tt>false</tt> otherwise
886      * @throws NullPointerException if the specified value is null
887      */
888     public boolean contains(Object value) {
889         return containsValue(value);
890     }
891 
892     /**
893      * Maps the specified key to the specified value in this table.  Neither the
894      * key nor the value can be null.
895      *
896      * <p>The value can be retrieved by calling the <tt>get</tt> method with a
897      * key that is equal to the original key.
898      *
899      * @param key key with which the specified value is to be associated
900      * @param value value to be associated with the specified key
901      * @return the previous value associated with <tt>key</tt>, or <tt>null</tt>
902      *         if there was no mapping for <tt>key</tt>
903      * @throws NullPointerException if the specified key or value is null
904      */
905     @Override
906     public V put(K key, V value) {
907         if (value == null) {
908             throw new NullPointerException();
909         }
910         int hash = hashOf(key);
911         return segmentFor(hash).put(key, hash, value, false);
912     }
913 
914     /**
915      * @return the previous value associated with the specified key, or
916      *         <tt>null</tt> if there was no mapping for the key
917      * @throws NullPointerException if the specified key or value is null
918      */
919     public V putIfAbsent(K key, V value) {
920         if (value == null) {
921             throw new NullPointerException();
922         }
923         int hash = hashOf(key);
924         return segmentFor(hash).put(key, hash, value, true);
925     }
926 
927     /**
928      * Copies all of the mappings from the specified map to this one.  These
929      * mappings replace any mappings that this map had for any of the keys
930      * currently in the specified map.
931      *
932      * @param m mappings to be stored in this map
933      */
934     @Override
935     public void putAll(Map<? extends K, ? extends V> m) {
936         for (Map.Entry<? extends K, ? extends V> e: m.entrySet()) {
937             put(e.getKey(), e.getValue());
938         }
939     }
940 
941     /**
942      * Removes the key (and its corresponding value) from this map.  This method
943      * does nothing if the key is not in the map.
944      *
945      * @param  key the key that needs to be removed
946      * @return the previous value associated with <tt>key</tt>, or <tt>null</tt>
947      *         if there was no mapping for <tt>key</tt>
948      * @throws NullPointerException if the specified key is null
949      */
950     @Override
951     public V remove(Object key) {
952         int hash = hashOf(key);
953         return segmentFor(hash).remove(key, hash, null, false);
954     }
955 
956     /**
957      * @throws NullPointerException if the specified key is null
958      */
959     public boolean remove(Object key, Object value) {
960         int hash = hashOf(key);
961         if (value == null) {
962             return false;
963         }
964         return segmentFor(hash).remove(key, hash, value, false) != null;
965     }
966 
967     /**
968      * @throws NullPointerException if any of the arguments are null
969      */
970     public boolean replace(K key, V oldValue, V newValue) {
971         if (oldValue == null || newValue == null) {
972             throw new NullPointerException();
973         }
974         int hash = hashOf(key);
975         return segmentFor(hash).replace(key, hash, oldValue, newValue);
976     }
977 
978     /**
979      * @return the previous value associated with the specified key, or
980      *         <tt>null</tt> if there was no mapping for the key
981      * @throws NullPointerException if the specified key or value is null
982      */
983     public V replace(K key, V value) {
984         if (value == null) {
985             throw new NullPointerException();
986         }
987         int hash = hashOf(key);
988         return segmentFor(hash).replace(key, hash, value);
989     }
990 
991     /**
992      * Removes all of the mappings from this map.
993      */
994     @Override
995     public void clear() {
996         for (Segment<K, V> segment: segments) {
997             segment.clear();
998         }
999     }
1000 
1001     /**
1002      * Returns a {@link Set} view of the keys contained in this map.  The set is
1003      * backed by the map, so changes to the map are reflected in the set, and
1004      * vice-versa.  The set supports element removal, which removes the
1005      * corresponding mapping from this map, via the <tt>Iterator.remove</tt>,
1006      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
1007      * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
1008      * <tt>addAll</tt> operations.
1009      *
1010      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator that
1011      * will never throw {@link ConcurrentModificationException}, and guarantees
1012      * to traverse elements as they existed upon construction of the iterator,
1013      * and may (but is not guaranteed to) reflect any modifications subsequent
1014      * to construction.
1015      */
1016     @Override
1017     public Set<K> keySet() {
1018         Set<K> ks = keySet;
1019         return ks != null? ks : (keySet = new KeySet());
1020     }
1021 
1022     /**
1023      * Returns a {@link Collection} view of the values contained in this map.
1024      * The collection is backed by the map, so changes to the map are reflected
1025      * in the collection, and vice-versa.  The collection supports element
1026      * removal, which removes the corresponding mapping from this map, via the
1027      * <tt>Iterator.remove</tt>, <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1028      * <tt>retainAll</tt>, and <tt>clear</tt> operations.  It does not support
1029      * the <tt>add</tt> or <tt>addAll</tt> operations.
1030      *
1031      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator that
1032      * will never throw {@link ConcurrentModificationException}, and guarantees
1033      * to traverse elements as they existed upon construction of the iterator,
1034      * and may (but is not guaranteed to) reflect any modifications subsequent
1035      * to construction.
1036      */
1037     @Override
1038     public Collection<V> values() {
1039         Collection<V> vs = values;
1040         return vs != null? vs : (values = new Values());
1041     }
1042 
1043     /**
1044      * Returns a {@link Set} view of the mappings contained in this map.
1045      * The set is backed by the map, so changes to the map are reflected in the
1046      * set, and vice-versa.  The set supports element removal, which removes the
1047      * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
1048      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
1049      * <tt>clear</tt> operations.  It does not support the <tt>add</tt> or
1050      * <tt>addAll</tt> operations.
1051      *
1052      * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator that
1053      * will never throw {@link ConcurrentModificationException}, and guarantees
1054      * to traverse elements as they existed upon construction of the iterator,
1055      * and may (but is not guaranteed to) reflect any modifications subsequent
1056      * to construction.
1057      */
1058     @Override
1059     public Set<Map.Entry<K, V>> entrySet() {
1060         Set<Map.Entry<K, V>> es = entrySet;
1061         return es != null? es : (entrySet = new EntrySet());
1062     }
1063 
1064     /**
1065      * Returns an enumeration of the keys in this table.
1066      *
1067      * @return an enumeration of the keys in this table
1068      * @see #keySet()
1069      */
1070     public Enumeration<K> keys() {
1071         return new KeyIterator();
1072     }
1073 
1074     /**
1075      * Returns an enumeration of the values in this table.
1076      *
1077      * @return an enumeration of the values in this table
1078      * @see #values()
1079      */
1080     public Enumeration<V> elements() {
1081         return new ValueIterator();
1082     }
1083 
1084     /* ---------------- Iterator Support -------------- */
1085 
1086     abstract class HashIterator {
1087         int nextSegmentIndex;
1088         int nextTableIndex;
1089         HashEntry<K, V>[] currentTable;
1090         HashEntry<K, V> nextEntry;
1091         HashEntry<K, V> lastReturned;
1092         K currentKey; // Strong reference to weak key (prevents gc)
1093 
1094         HashIterator() {
1095             nextSegmentIndex = segments.length - 1;
1096             nextTableIndex = -1;
1097             advance();
1098         }
1099 
1100         public void rewind() {
1101             nextSegmentIndex = segments.length - 1;
1102             nextTableIndex = -1;
1103             currentTable = null;
1104             nextEntry = null;
1105             lastReturned = null;
1106             currentKey = null;
1107             advance();
1108         }
1109 
1110         public boolean hasMoreElements() {
1111             return hasNext();
1112         }
1113 
1114         final void advance() {
1115             if (nextEntry != null && (nextEntry = nextEntry.next) != null) {
1116                 return;
1117             }
1118 
1119             while (nextTableIndex >= 0) {
1120                 if ((nextEntry = currentTable[nextTableIndex --]) != null) {
1121                     return;
1122                 }
1123             }
1124 
1125             while (nextSegmentIndex >= 0) {
1126                 Segment<K, V> seg = segments[nextSegmentIndex --];
1127                 if (seg.count != 0) {
1128                     currentTable = seg.table;
1129                     for (int j = currentTable.length - 1; j >= 0; -- j) {
1130                         if ((nextEntry = currentTable[j]) != null) {
1131                             nextTableIndex = j - 1;
1132                             return;
1133                         }
1134                     }
1135                 }
1136             }
1137         }
1138 
1139         public boolean hasNext() {
1140             while (nextEntry != null) {
1141                 if (nextEntry.key() != null) {
1142                     return true;
1143                 }
1144                 advance();
1145             }
1146 
1147             return false;
1148         }
1149 
1150         HashEntry<K, V> nextEntry() {
1151             do {
1152                 if (nextEntry == null) {
1153                     throw new NoSuchElementException();
1154                 }
1155 
1156                 lastReturned = nextEntry;
1157                 currentKey = lastReturned.key();
1158                 advance();
1159             } while (currentKey == null); // Skip GC'd keys
1160 
1161             return lastReturned;
1162         }
1163 
1164         public void remove() {
1165             if (lastReturned == null) {
1166                 throw new IllegalStateException();
1167             }
1168             ConcurrentHashMap.this.remove(currentKey);
1169             lastReturned = null;
1170         }
1171     }
1172 
1173     final class KeyIterator
1174             extends HashIterator implements ReusableIterator<K>, Enumeration<K> {
1175 
1176         public K next() {
1177             return nextEntry().key();
1178         }
1179 
1180         public K nextElement() {
1181             return nextEntry().key();
1182         }
1183     }
1184 
1185     final class ValueIterator
1186             extends HashIterator implements ReusableIterator<V>, Enumeration<V> {
1187 
1188         public V next() {
1189             return nextEntry().value();
1190         }
1191 
1192         public V nextElement() {
1193             return nextEntry().value();
1194         }
1195     }
1196 
1197     /*
1198      * This class is needed for JDK5 compatibility.
1199      */
1200     static class SimpleEntry<K, V> implements Entry<K, V> {
1201 
1202         private final K key;
1203 
1204         private V value;
1205 
1206         public SimpleEntry(K key, V value) {
1207             this.key = key;
1208             this.value = value;
1209 
1210         }
1211 
1212         public SimpleEntry(Entry<? extends K, ? extends V> entry) {
1213             key = entry.getKey();
1214             value = entry.getValue();
1215 
1216         }
1217 
1218         public K getKey() {
1219             return key;
1220         }
1221 
1222         public V getValue() {
1223             return value;
1224         }
1225 
1226         public V setValue(V value) {
1227             V oldValue = this.value;
1228             this.value = value;
1229             return oldValue;
1230         }
1231 
1232         @Override
1233         public boolean equals(Object o) {
1234             if (!(o instanceof Map.Entry<?, ?>)) {
1235                 return false;
1236             }
1237             @SuppressWarnings("rawtypes")
1238             Map.Entry e = (Map.Entry) o;
1239             return eq(key, e.getKey()) && eq(value, e.getValue());
1240         }
1241 
1242         @Override
1243         public int hashCode() {
1244             return (key == null? 0 : key.hashCode()) ^ (value == null? 0 : value.hashCode());
1245         }
1246 
1247         @Override
1248         public String toString() {
1249             return key + "=" + value;
1250         }
1251 
1252         private static boolean eq(Object o1, Object o2) {
1253             return o1 == null? o2 == null : o1.equals(o2);
1254         }
1255     }
1256 
1257     /**
1258      * Custom Entry class used by EntryIterator.next(), that relays setValue
1259      * changes to the underlying map.
1260      */
1261     final class WriteThroughEntry extends SimpleEntry<K, V> {
1262 
1263         WriteThroughEntry(K k, V v) {
1264             super(k, v);
1265         }
1266 
1267         /**
1268          * Set our entry's value and write through to the map. The value to
1269          * return is somewhat arbitrary here. Since a WriteThroughEntry does not
1270          * necessarily track asynchronous changes, the most recent "previous"
1271          * value could be different from what we return (or could even have been
1272          * removed in which case the put will re-establish). We do not and can
1273          * not guarantee more.
1274          */
1275         @Override
1276         public V setValue(V value) {
1277 
1278             if (value == null) {
1279                 throw new NullPointerException();
1280             }
1281             V v = super.setValue(value);
1282             put(getKey(), value);
1283             return v;
1284         }
1285 
1286     }
1287 
1288     final class EntryIterator extends HashIterator implements
1289             ReusableIterator<Entry<K, V>> {
1290         public Map.Entry<K, V> next() {
1291             HashEntry<K, V> e = nextEntry();
1292             return new WriteThroughEntry(e.key(), e.value());
1293         }
1294     }
1295 
1296     final class KeySet extends AbstractSet<K> {
1297         @Override
1298         public Iterator<K> iterator() {
1299 
1300             return new KeyIterator();
1301         }
1302 
1303         @Override
1304         public int size() {
1305             return ConcurrentHashMap.this.size();
1306         }
1307 
1308         @Override
1309         public boolean isEmpty() {
1310             return ConcurrentHashMap.this.isEmpty();
1311         }
1312 
1313         @Override
1314         public boolean contains(Object o) {
1315             return containsKey(o);
1316         }
1317 
1318         @Override
1319         public boolean remove(Object o) {
1320             return ConcurrentHashMap.this.remove(o) != null;
1321 
1322         }
1323 
1324         @Override
1325         public void clear() {
1326             ConcurrentHashMap.this.clear();
1327         }
1328     }
1329 
1330     final class Values extends AbstractCollection<V> {
1331         @Override
1332         public Iterator<V> iterator() {
1333             return new ValueIterator();
1334         }
1335 
1336         @Override
1337         public int size() {
1338             return ConcurrentHashMap.this.size();
1339         }
1340 
1341         @Override
1342         public boolean isEmpty() {
1343             return ConcurrentHashMap.this.isEmpty();
1344         }
1345 
1346         @Override
1347         public boolean contains(Object o) {
1348             return containsValue(o);
1349         }
1350 
1351         @Override
1352         public void clear() {
1353             ConcurrentHashMap.this.clear();
1354         }
1355     }
1356 
1357     final class EntrySet extends AbstractSet<Map.Entry<K, V>> {
1358         @Override
1359         public Iterator<Map.Entry<K, V>> iterator() {
1360             return new EntryIterator();
1361         }
1362 
1363         @Override
1364         public boolean contains(Object o) {
1365             if (!(o instanceof Map.Entry<?, ?>)) {
1366                 return false;
1367             }
1368             Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
1369             V v = get(e.getKey());
1370             return v != null && v.equals(e.getValue());
1371         }
1372 
1373         @Override
1374         public boolean remove(Object o) {
1375             if (!(o instanceof Map.Entry<?, ?>)) {
1376                 return false;
1377             }
1378             Map.Entry<?, ?> e = (Map.Entry<?, ?>) o;
1379             return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
1380         }
1381 
1382         @Override
1383         public int size() {
1384             return ConcurrentHashMap.this.size();
1385         }
1386 
1387         @Override
1388         public boolean isEmpty() {
1389             return ConcurrentHashMap.this.isEmpty();
1390         }
1391 
1392         @Override
1393         public void clear() {
1394             ConcurrentHashMap.this.clear();
1395         }
1396     }
1397 }