View Javadoc
1   /*
2    * Copyright 2012 The Netty Project
3    *
4    * The Netty Project licenses this file to you under the Apache License,
5    * version 2.0 (the "License"); you may not use this file except in compliance
6    * with the License. You may obtain a copy of the License at:
7    *
8    *   https://www.apache.org/licenses/LICENSE-2.0
9    *
10   * Unless required by applicable law or agreed to in writing, software
11   * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12   * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13   * License for the specific language governing permissions and limitations
14   * under the License.
15   */
16  package io.netty.handler.ssl;
17  
18  import io.netty.buffer.ByteBuf;
19  import io.netty.buffer.ByteBufAllocator;
20  import io.netty.buffer.ByteBufUtil;
21  import io.netty.buffer.CompositeByteBuf;
22  import io.netty.buffer.Unpooled;
23  import io.netty.channel.Channel;
24  import io.netty.channel.ChannelConfig;
25  import io.netty.channel.ChannelException;
26  import io.netty.channel.ChannelFuture;
27  import io.netty.channel.ChannelFutureListener;
28  import io.netty.channel.ChannelHandlerContext;
29  import io.netty.channel.ChannelInboundHandler;
30  import io.netty.channel.ChannelOption;
31  import io.netty.channel.ChannelOutboundBuffer;
32  import io.netty.channel.ChannelOutboundHandler;
33  import io.netty.channel.ChannelPipeline;
34  import io.netty.channel.ChannelPromise;
35  import io.netty.channel.unix.UnixChannel;
36  import io.netty.handler.codec.ByteToMessageDecoder;
37  import io.netty.handler.codec.DecoderException;
38  import io.netty.handler.codec.UnsupportedMessageTypeException;
39  import io.netty.util.ReferenceCountUtil;
40  import io.netty.util.concurrent.DefaultPromise;
41  import io.netty.util.concurrent.EventExecutor;
42  import io.netty.util.concurrent.Future;
43  import io.netty.util.concurrent.FutureListener;
44  import io.netty.util.concurrent.ImmediateExecutor;
45  import io.netty.util.concurrent.Promise;
46  import io.netty.util.concurrent.PromiseNotifier;
47  import io.netty.util.internal.ObjectUtil;
48  import io.netty.util.internal.PlatformDependent;
49  import io.netty.util.internal.ThrowableUtil;
50  import io.netty.util.internal.UnstableApi;
51  import io.netty.util.internal.logging.InternalLogger;
52  import io.netty.util.internal.logging.InternalLoggerFactory;
53  
54  import javax.net.ssl.SSLEngine;
55  import javax.net.ssl.SSLEngineResult;
56  import javax.net.ssl.SSLEngineResult.HandshakeStatus;
57  import javax.net.ssl.SSLEngineResult.Status;
58  import javax.net.ssl.SSLException;
59  import javax.net.ssl.SSLHandshakeException;
60  import javax.net.ssl.SSLSession;
61  import java.io.IOException;
62  import java.net.SocketAddress;
63  import java.nio.ByteBuffer;
64  import java.nio.channels.ClosedChannelException;
65  import java.nio.channels.DatagramChannel;
66  import java.nio.channels.SocketChannel;
67  import java.security.cert.CertificateException;
68  import java.util.List;
69  import java.util.concurrent.Executor;
70  import java.util.concurrent.RejectedExecutionException;
71  import java.util.concurrent.TimeUnit;
72  import java.util.regex.Pattern;
73  
74  import static io.netty.handler.ssl.SslUtils.NOT_ENOUGH_DATA;
75  import static io.netty.handler.ssl.SslUtils.getEncryptedPacketLength;
76  import static io.netty.util.internal.ObjectUtil.checkNotNull;
77  import static io.netty.util.internal.ObjectUtil.checkPositiveOrZero;
78  
79  /**
80   * Adds <a href="https://en.wikipedia.org/wiki/Transport_Layer_Security">SSL
81   * &middot; TLS</a> and StartTLS support to a {@link Channel}.  Please refer
82   * to the <strong>"SecureChat"</strong> example in the distribution or the web
83   * site for the detailed usage.
84   *
85   * <h3>Beginning the handshake</h3>
86   * <p>
87   * Beside using the handshake {@link ChannelFuture} to get notified about the completion of the handshake it's
88   * also possible to detect it by implement the
89   * {@link ChannelInboundHandler#userEventTriggered(ChannelHandlerContext, Object)}
90   * method and check for a {@link SslHandshakeCompletionEvent}.
91   *
92   * <h3>Handshake</h3>
93   * <p>
94   * The handshake will be automatically issued for you once the {@link Channel} is active and
95   * {@link SSLEngine#getUseClientMode()} returns {@code true}.
96   * So no need to bother with it by your self.
97   *
98   * <h3>Closing the session</h3>
99   * <p>
100  * To close the SSL session, the {@link #closeOutbound()} method should be
101  * called to send the {@code close_notify} message to the remote peer. One
102  * exception is when you close the {@link Channel} - {@link SslHandler}
103  * intercepts the close request and send the {@code close_notify} message
104  * before the channel closure automatically.  Once the SSL session is closed,
105  * it is not reusable, and consequently you should create a new
106  * {@link SslHandler} with a new {@link SSLEngine} as explained in the
107  * following section.
108  *
109  * <h3>Restarting the session</h3>
110  * <p>
111  * To restart the SSL session, you must remove the existing closed
112  * {@link SslHandler} from the {@link ChannelPipeline}, insert a new
113  * {@link SslHandler} with a new {@link SSLEngine} into the pipeline,
114  * and start the handshake process as described in the first section.
115  *
116  * <h3>Implementing StartTLS</h3>
117  * <p>
118  * <a href="https://en.wikipedia.org/wiki/STARTTLS">StartTLS</a> is the
119  * communication pattern that secures the wire in the middle of the plaintext
120  * connection.  Please note that it is different from SSL &middot; TLS, that
121  * secures the wire from the beginning of the connection.  Typically, StartTLS
122  * is composed of three steps:
123  * <ol>
124  * <li>Client sends a StartTLS request to server.</li>
125  * <li>Server sends a StartTLS response to client.</li>
126  * <li>Client begins SSL handshake.</li>
127  * </ol>
128  * If you implement a server, you need to:
129  * <ol>
130  * <li>create a new {@link SslHandler} instance with {@code startTls} flag set
131  *     to {@code true},</li>
132  * <li>insert the {@link SslHandler} to the {@link ChannelPipeline}, and</li>
133  * <li>write a StartTLS response.</li>
134  * </ol>
135  * Please note that you must insert {@link SslHandler} <em>before</em> sending
136  * the StartTLS response.  Otherwise the client can send begin SSL handshake
137  * before {@link SslHandler} is inserted to the {@link ChannelPipeline}, causing
138  * data corruption.
139  * <p>
140  * The client-side implementation is much simpler.
141  * <ol>
142  * <li>Write a StartTLS request,</li>
143  * <li>wait for the StartTLS response,</li>
144  * <li>create a new {@link SslHandler} instance with {@code startTls} flag set
145  *     to {@code false},</li>
146  * <li>insert the {@link SslHandler} to the {@link ChannelPipeline}, and</li>
147  * <li>Initiate SSL handshake.</li>
148  * </ol>
149  *
150  * <h3>Known issues</h3>
151  * <p>
152  * Because of a known issue with the current implementation of the SslEngine that comes
153  * with Java it may be possible that you see blocked IO-Threads while a full GC is done.
154  * <p>
155  * So if you are affected you can workaround this problem by adjust the cache settings
156  * like shown below:
157  *
158  * <pre>
159  *     SslContext context = ...;
160  *     context.getServerSessionContext().setSessionCacheSize(someSaneSize);
161  *     context.getServerSessionContext().setSessionTime(someSameTimeout);
162  * </pre>
163  * <p>
164  * What values to use here depends on the nature of your application and should be set
165  * based on monitoring and debugging of it.
166  * For more details see
167  * <a href="https://github.com/netty/netty/issues/832">#832</a> in our issue tracker.
168  */
169 public class SslHandler extends ByteToMessageDecoder implements ChannelOutboundHandler {
170     private static final InternalLogger logger =
171             InternalLoggerFactory.getInstance(SslHandler.class);
172     private static final Pattern IGNORABLE_CLASS_IN_STACK = Pattern.compile(
173             "^.*(?:Socket|Datagram|Sctp|Udt)Channel.*$");
174     private static final Pattern IGNORABLE_ERROR_MESSAGE = Pattern.compile(
175             "^.*(?:connection.*(?:reset|closed|abort|broken)|broken.*pipe).*$", Pattern.CASE_INSENSITIVE);
176     private static final int STATE_SENT_FIRST_MESSAGE = 1;
177     private static final int STATE_FLUSHED_BEFORE_HANDSHAKE = 1 << 1;
178     private static final int STATE_READ_DURING_HANDSHAKE = 1 << 2;
179     private static final int STATE_HANDSHAKE_STARTED = 1 << 3;
180     /**
181      * Set by wrap*() methods when something is produced.
182      * {@link #channelReadComplete(ChannelHandlerContext)} will check this flag, clear it, and call ctx.flush().
183      */
184     private static final int STATE_NEEDS_FLUSH = 1 << 4;
185     private static final int STATE_OUTBOUND_CLOSED = 1 << 5;
186     private static final int STATE_CLOSE_NOTIFY = 1 << 6;
187     private static final int STATE_PROCESS_TASK = 1 << 7;
188     /**
189      * This flag is used to determine if we need to call {@link ChannelHandlerContext#read()} to consume more data
190      * when {@link ChannelConfig#isAutoRead()} is {@code false}.
191      */
192     private static final int STATE_FIRE_CHANNEL_READ = 1 << 8;
193     private static final int STATE_UNWRAP_REENTRY = 1 << 9;
194 
195     /**
196      * <a href="https://tools.ietf.org/html/rfc5246#section-6.2">2^14</a> which is the maximum sized plaintext chunk
197      * allowed by the TLS RFC.
198      */
199     private static final int MAX_PLAINTEXT_LENGTH = 16 * 1024;
200 
201     private enum SslEngineType {
202         TCNATIVE(true, COMPOSITE_CUMULATOR) {
203             @Override
204             SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int len, ByteBuf out) throws SSLException {
205                 int nioBufferCount = in.nioBufferCount();
206                 int writerIndex = out.writerIndex();
207                 final SSLEngineResult result;
208                 if (nioBufferCount > 1) {
209                     /*
210                      * If {@link OpenSslEngine} is in use,
211                      * we can use a special {@link OpenSslEngine#unwrap(ByteBuffer[], ByteBuffer[])} method
212                      * that accepts multiple {@link ByteBuffer}s without additional memory copies.
213                      */
214                     ReferenceCountedOpenSslEngine opensslEngine = (ReferenceCountedOpenSslEngine) handler.engine;
215                     try {
216                         handler.singleBuffer[0] = toByteBuffer(out, writerIndex, out.writableBytes());
217                         result = opensslEngine.unwrap(in.nioBuffers(in.readerIndex(), len), handler.singleBuffer);
218                     } finally {
219                         handler.singleBuffer[0] = null;
220                     }
221                 } else {
222                     result = handler.engine.unwrap(toByteBuffer(in, in.readerIndex(), len),
223                         toByteBuffer(out, writerIndex, out.writableBytes()));
224                 }
225                 out.writerIndex(writerIndex + result.bytesProduced());
226                 return result;
227             }
228 
229             @Override
230             ByteBuf allocateWrapBuffer(SslHandler handler, ByteBufAllocator allocator,
231                                        int pendingBytes, int numComponents) {
232                 return allocator.directBuffer(((ReferenceCountedOpenSslEngine) handler.engine)
233                         .calculateOutNetBufSize(pendingBytes, numComponents));
234             }
235 
236             @Override
237             int calculateRequiredOutBufSpace(SslHandler handler, int pendingBytes, int numComponents) {
238                 return ((ReferenceCountedOpenSslEngine) handler.engine)
239                         .calculateMaxLengthForWrap(pendingBytes, numComponents);
240             }
241 
242             @Override
243             int calculatePendingData(SslHandler handler, int guess) {
244                 int sslPending = ((ReferenceCountedOpenSslEngine) handler.engine).sslPending();
245                 return sslPending > 0 ? sslPending : guess;
246             }
247 
248             @Override
249             boolean jdkCompatibilityMode(SSLEngine engine) {
250                 return ((ReferenceCountedOpenSslEngine) engine).jdkCompatibilityMode;
251             }
252         },
253         CONSCRYPT(true, COMPOSITE_CUMULATOR) {
254             @Override
255             SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int len, ByteBuf out) throws SSLException {
256                 int nioBufferCount = in.nioBufferCount();
257                 int writerIndex = out.writerIndex();
258                 final SSLEngineResult result;
259                 if (nioBufferCount > 1) {
260                     /*
261                      * Use a special unwrap method without additional memory copies.
262                      */
263                     try {
264                         handler.singleBuffer[0] = toByteBuffer(out, writerIndex, out.writableBytes());
265                         result = ((ConscryptAlpnSslEngine) handler.engine).unwrap(
266                                 in.nioBuffers(in.readerIndex(), len),
267                                 handler.singleBuffer);
268                     } finally {
269                         handler.singleBuffer[0] = null;
270                     }
271                 } else {
272                     result = handler.engine.unwrap(toByteBuffer(in, in.readerIndex(), len),
273                             toByteBuffer(out, writerIndex, out.writableBytes()));
274                 }
275                 out.writerIndex(writerIndex + result.bytesProduced());
276                 return result;
277             }
278 
279             @Override
280             ByteBuf allocateWrapBuffer(SslHandler handler, ByteBufAllocator allocator,
281                                        int pendingBytes, int numComponents) {
282                 return allocator.directBuffer(
283                         ((ConscryptAlpnSslEngine) handler.engine).calculateOutNetBufSize(pendingBytes, numComponents));
284             }
285 
286             @Override
287             int calculateRequiredOutBufSpace(SslHandler handler, int pendingBytes, int numComponents) {
288                 return ((ConscryptAlpnSslEngine) handler.engine)
289                         .calculateRequiredOutBufSpace(pendingBytes, numComponents);
290             }
291 
292             @Override
293             int calculatePendingData(SslHandler handler, int guess) {
294                 return guess;
295             }
296 
297             @Override
298             boolean jdkCompatibilityMode(SSLEngine engine) {
299                 return true;
300             }
301         },
302         JDK(false, MERGE_CUMULATOR) {
303             @Override
304             SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int len, ByteBuf out) throws SSLException {
305                 int writerIndex = out.writerIndex();
306                 ByteBuffer inNioBuffer = toByteBuffer(in, in.readerIndex(), len);
307                 int position = inNioBuffer.position();
308                 final SSLEngineResult result = handler.engine.unwrap(inNioBuffer,
309                     toByteBuffer(out, writerIndex, out.writableBytes()));
310                 out.writerIndex(writerIndex + result.bytesProduced());
311 
312                 // This is a workaround for a bug in Android 5.0. Android 5.0 does not correctly update the
313                 // SSLEngineResult.bytesConsumed() in some cases and just return 0.
314                 //
315                 // See:
316                 //     - https://android-review.googlesource.com/c/platform/external/conscrypt/+/122080
317                 //     - https://github.com/netty/netty/issues/7758
318                 if (result.bytesConsumed() == 0) {
319                     int consumed = inNioBuffer.position() - position;
320                     if (consumed != result.bytesConsumed()) {
321                         // Create a new SSLEngineResult with the correct bytesConsumed().
322                         return new SSLEngineResult(
323                                 result.getStatus(), result.getHandshakeStatus(), consumed, result.bytesProduced());
324                     }
325                 }
326                 return result;
327             }
328 
329             @Override
330             ByteBuf allocateWrapBuffer(SslHandler handler, ByteBufAllocator allocator,
331                                        int pendingBytes, int numComponents) {
332                 // For JDK we don't have a good source for the max wrap overhead. We need at least one packet buffer
333                 // size, but may be able to fit more in based on the total requested.
334                 return allocator.heapBuffer(Math.max(pendingBytes, handler.engine.getSession().getPacketBufferSize()));
335             }
336 
337             @Override
338             int calculateRequiredOutBufSpace(SslHandler handler, int pendingBytes, int numComponents) {
339                 // As for the JDK SSLEngine we always need to operate on buffer space required by the SSLEngine
340                 // (normally ~16KB). This is required even if the amount of data to encrypt is very small. Use heap
341                 // buffers to reduce the native memory usage.
342                 //
343                 // Beside this the JDK SSLEngine also (as of today) will do an extra heap to direct buffer copy
344                 // if a direct buffer is used as its internals operate on byte[].
345                 return handler.engine.getSession().getPacketBufferSize();
346             }
347 
348             @Override
349             int calculatePendingData(SslHandler handler, int guess) {
350                 return guess;
351             }
352 
353             @Override
354             boolean jdkCompatibilityMode(SSLEngine engine) {
355                 return true;
356             }
357         };
358 
359         static SslEngineType forEngine(SSLEngine engine) {
360             return engine instanceof ReferenceCountedOpenSslEngine ? TCNATIVE :
361                    engine instanceof ConscryptAlpnSslEngine ? CONSCRYPT : JDK;
362         }
363 
364         SslEngineType(boolean wantsDirectBuffer, Cumulator cumulator) {
365             this.wantsDirectBuffer = wantsDirectBuffer;
366             this.cumulator = cumulator;
367         }
368 
369         abstract SSLEngineResult unwrap(SslHandler handler, ByteBuf in, int len, ByteBuf out) throws SSLException;
370 
371         abstract int calculatePendingData(SslHandler handler, int guess);
372 
373         abstract boolean jdkCompatibilityMode(SSLEngine engine);
374 
375         abstract ByteBuf allocateWrapBuffer(SslHandler handler, ByteBufAllocator allocator,
376                                             int pendingBytes, int numComponents);
377 
378         abstract int calculateRequiredOutBufSpace(SslHandler handler, int pendingBytes, int numComponents);
379 
380         // BEGIN Platform-dependent flags
381 
382         /**
383          * {@code true} if and only if {@link SSLEngine} expects a direct buffer and so if a heap buffer
384          * is given will make an extra memory copy.
385          */
386         final boolean wantsDirectBuffer;
387 
388         // END Platform-dependent flags
389 
390         /**
391          * When using JDK {@link SSLEngine}, we use {@link #MERGE_CUMULATOR} because it works only with
392          * one {@link ByteBuffer}.
393          *
394          * When using {@link OpenSslEngine}, we can use {@link #COMPOSITE_CUMULATOR} because it has
395          * {@link OpenSslEngine#unwrap(ByteBuffer[], ByteBuffer[])} which works with multiple {@link ByteBuffer}s
396          * and which does not need to do extra memory copies.
397          */
398         final Cumulator cumulator;
399     }
400 
401     private volatile ChannelHandlerContext ctx;
402     private final SSLEngine engine;
403     private final SslEngineType engineType;
404     private final Executor delegatedTaskExecutor;
405     private final boolean jdkCompatibilityMode;
406 
407     /**
408      * Used if {@link SSLEngine#wrap(ByteBuffer[], ByteBuffer)} and {@link SSLEngine#unwrap(ByteBuffer, ByteBuffer[])}
409      * should be called with a {@link ByteBuf} that is only backed by one {@link ByteBuffer} to reduce the object
410      * creation.
411      */
412     private final ByteBuffer[] singleBuffer = new ByteBuffer[1];
413 
414     private final boolean startTls;
415     private final ResumptionController resumptionController;
416 
417     private final SslTasksRunner sslTaskRunnerForUnwrap = new SslTasksRunner(true);
418     private final SslTasksRunner sslTaskRunner = new SslTasksRunner(false);
419 
420     private SslHandlerCoalescingBufferQueue pendingUnencryptedWrites;
421     private Promise<Channel> handshakePromise = new LazyChannelPromise();
422     private final LazyChannelPromise sslClosePromise = new LazyChannelPromise();
423 
424     private int packetLength;
425     private short state;
426 
427     private volatile long handshakeTimeoutMillis = 10000;
428     private volatile long closeNotifyFlushTimeoutMillis = 3000;
429     private volatile long closeNotifyReadTimeoutMillis;
430     volatile int wrapDataSize = MAX_PLAINTEXT_LENGTH;
431 
432     /**
433      * Creates a new instance which runs all delegated tasks directly on the {@link EventExecutor}.
434      *
435      * @param engine  the {@link SSLEngine} this handler will use
436      */
437     public SslHandler(SSLEngine engine) {
438         this(engine, false);
439     }
440 
441     /**
442      * Creates a new instance which runs all delegated tasks directly on the {@link EventExecutor}.
443      *
444      * @param engine    the {@link SSLEngine} this handler will use
445      * @param startTls  {@code true} if the first write request shouldn't be
446      *                  encrypted by the {@link SSLEngine}
447      */
448     public SslHandler(SSLEngine engine, boolean startTls) {
449         this(engine, startTls, ImmediateExecutor.INSTANCE);
450     }
451 
452     /**
453      * Creates a new instance.
454      *
455      * @param engine  the {@link SSLEngine} this handler will use
456      * @param delegatedTaskExecutor the {@link Executor} that will be used to execute tasks that are returned by
457      *                              {@link SSLEngine#getDelegatedTask()}.
458      */
459     public SslHandler(SSLEngine engine, Executor delegatedTaskExecutor) {
460         this(engine, false, delegatedTaskExecutor);
461     }
462 
463     /**
464      * Creates a new instance.
465      *
466      * @param engine  the {@link SSLEngine} this handler will use
467      * @param startTls  {@code true} if the first write request shouldn't be
468      *                  encrypted by the {@link SSLEngine}
469      * @param delegatedTaskExecutor the {@link Executor} that will be used to execute tasks that are returned by
470      *                              {@link SSLEngine#getDelegatedTask()}.
471      */
472     public SslHandler(SSLEngine engine, boolean startTls, Executor delegatedTaskExecutor) {
473         this(engine, startTls, delegatedTaskExecutor, null);
474     }
475 
476     SslHandler(SSLEngine engine, boolean startTls, Executor delegatedTaskExecutor,
477                ResumptionController resumptionController) {
478         this.engine = ObjectUtil.checkNotNull(engine, "engine");
479         this.delegatedTaskExecutor = ObjectUtil.checkNotNull(delegatedTaskExecutor, "delegatedTaskExecutor");
480         engineType = SslEngineType.forEngine(engine);
481         this.startTls = startTls;
482         this.jdkCompatibilityMode = engineType.jdkCompatibilityMode(engine);
483         setCumulator(engineType.cumulator);
484         this.resumptionController = resumptionController;
485     }
486 
487     public long getHandshakeTimeoutMillis() {
488         return handshakeTimeoutMillis;
489     }
490 
491     public void setHandshakeTimeout(long handshakeTimeout, TimeUnit unit) {
492         checkNotNull(unit, "unit");
493         setHandshakeTimeoutMillis(unit.toMillis(handshakeTimeout));
494     }
495 
496     public void setHandshakeTimeoutMillis(long handshakeTimeoutMillis) {
497         this.handshakeTimeoutMillis = checkPositiveOrZero(handshakeTimeoutMillis, "handshakeTimeoutMillis");
498     }
499 
500     /**
501      * Sets the number of bytes to pass to each {@link SSLEngine#wrap(ByteBuffer[], int, int, ByteBuffer)} call.
502      * <p>
503      * This value will partition data which is passed to write
504      * {@link #write(ChannelHandlerContext, Object, ChannelPromise)}. The partitioning will work as follows:
505      * <ul>
506      * <li>If {@code wrapDataSize <= 0} then we will write each data chunk as is.</li>
507      * <li>If {@code wrapDataSize > data size} then we will attempt to aggregate multiple data chunks together.</li>
508      * <li>If {@code wrapDataSize > data size}  Else if {@code wrapDataSize <= data size} then we will divide the data
509      * into chunks of {@code wrapDataSize} when writing.</li>
510      * </ul>
511      * <p>
512      * If the {@link SSLEngine} doesn't support a gather wrap operation (e.g. {@link SslProvider#OPENSSL}) then
513      * aggregating data before wrapping can help reduce the ratio between TLS overhead vs data payload which will lead
514      * to better goodput. Writing fixed chunks of data can also help target the underlying transport's (e.g. TCP)
515      * frame size. Under lossy/congested network conditions this may help the peer get full TLS packets earlier and
516      * be able to do work sooner, as opposed to waiting for the all the pieces of the TLS packet to arrive.
517      * @param wrapDataSize the number of bytes which will be passed to each
518      *      {@link SSLEngine#wrap(ByteBuffer[], int, int, ByteBuffer)} call.
519      */
520     @UnstableApi
521     public final void setWrapDataSize(int wrapDataSize) {
522         this.wrapDataSize = wrapDataSize;
523     }
524 
525     /**
526      * @deprecated use {@link #getCloseNotifyFlushTimeoutMillis()}
527      */
528     @Deprecated
529     public long getCloseNotifyTimeoutMillis() {
530         return getCloseNotifyFlushTimeoutMillis();
531     }
532 
533     /**
534      * @deprecated use {@link #setCloseNotifyFlushTimeout(long, TimeUnit)}
535      */
536     @Deprecated
537     public void setCloseNotifyTimeout(long closeNotifyTimeout, TimeUnit unit) {
538         setCloseNotifyFlushTimeout(closeNotifyTimeout, unit);
539     }
540 
541     /**
542      * @deprecated use {@link #setCloseNotifyFlushTimeoutMillis(long)}
543      */
544     @Deprecated
545     public void setCloseNotifyTimeoutMillis(long closeNotifyFlushTimeoutMillis) {
546         setCloseNotifyFlushTimeoutMillis(closeNotifyFlushTimeoutMillis);
547     }
548 
549     /**
550      * Gets the timeout for flushing the close_notify that was triggered by closing the
551      * {@link Channel}. If the close_notify was not flushed in the given timeout the {@link Channel} will be closed
552      * forcibly.
553      */
554     public final long getCloseNotifyFlushTimeoutMillis() {
555         return closeNotifyFlushTimeoutMillis;
556     }
557 
558     /**
559      * Sets the timeout for flushing the close_notify that was triggered by closing the
560      * {@link Channel}. If the close_notify was not flushed in the given timeout the {@link Channel} will be closed
561      * forcibly.
562      */
563     public final void setCloseNotifyFlushTimeout(long closeNotifyFlushTimeout, TimeUnit unit) {
564         setCloseNotifyFlushTimeoutMillis(unit.toMillis(closeNotifyFlushTimeout));
565     }
566 
567     /**
568      * See {@link #setCloseNotifyFlushTimeout(long, TimeUnit)}.
569      */
570     public final void setCloseNotifyFlushTimeoutMillis(long closeNotifyFlushTimeoutMillis) {
571         this.closeNotifyFlushTimeoutMillis = checkPositiveOrZero(closeNotifyFlushTimeoutMillis,
572                 "closeNotifyFlushTimeoutMillis");
573     }
574 
575     /**
576      * Gets the timeout (in ms) for receiving the response for the close_notify that was triggered by closing the
577      * {@link Channel}. This timeout starts after the close_notify message was successfully written to the
578      * remote peer. Use {@code 0} to directly close the {@link Channel} and not wait for the response.
579      */
580     public final long getCloseNotifyReadTimeoutMillis() {
581         return closeNotifyReadTimeoutMillis;
582     }
583 
584     /**
585      * Sets the timeout  for receiving the response for the close_notify that was triggered by closing the
586      * {@link Channel}. This timeout starts after the close_notify message was successfully written to the
587      * remote peer. Use {@code 0} to directly close the {@link Channel} and not wait for the response.
588      */
589     public final void setCloseNotifyReadTimeout(long closeNotifyReadTimeout, TimeUnit unit) {
590         setCloseNotifyReadTimeoutMillis(unit.toMillis(closeNotifyReadTimeout));
591     }
592 
593     /**
594      * See {@link #setCloseNotifyReadTimeout(long, TimeUnit)}.
595      */
596     public final void setCloseNotifyReadTimeoutMillis(long closeNotifyReadTimeoutMillis) {
597         this.closeNotifyReadTimeoutMillis = checkPositiveOrZero(closeNotifyReadTimeoutMillis,
598                 "closeNotifyReadTimeoutMillis");
599     }
600 
601     /**
602      * Returns the {@link SSLEngine} which is used by this handler.
603      */
604     public SSLEngine engine() {
605         return engine;
606     }
607 
608     /**
609      * Returns the name of the current application-level protocol.
610      *
611      * @return the protocol name or {@code null} if application-level protocol has not been negotiated
612      */
613     public String applicationProtocol() {
614         SSLEngine engine = engine();
615         if (!(engine instanceof ApplicationProtocolAccessor)) {
616             return null;
617         }
618 
619         return ((ApplicationProtocolAccessor) engine).getNegotiatedApplicationProtocol();
620     }
621 
622     /**
623      * Returns a {@link Future} that will get notified once the current TLS handshake completes.
624      *
625      * @return the {@link Future} for the initial TLS handshake if {@link #renegotiate()} was not invoked.
626      *         The {@link Future} for the most recent {@linkplain #renegotiate() TLS renegotiation} otherwise.
627      */
628     public Future<Channel> handshakeFuture() {
629         return handshakePromise;
630     }
631 
632     /**
633      * Use {@link #closeOutbound()}
634      */
635     @Deprecated
636     public ChannelFuture close() {
637         return closeOutbound();
638     }
639 
640     /**
641      * Use {@link #closeOutbound(ChannelPromise)}
642      */
643     @Deprecated
644     public ChannelFuture close(ChannelPromise promise) {
645         return closeOutbound(promise);
646     }
647 
648     /**
649      * Sends an SSL {@code close_notify} message to the specified channel and
650      * destroys the underlying {@link SSLEngine}. This will <strong>not</strong> close the underlying
651      * {@link Channel}. If you want to also close the {@link Channel} use {@link Channel#close()} or
652      * {@link ChannelHandlerContext#close()}
653      */
654     public ChannelFuture closeOutbound() {
655         return closeOutbound(ctx.newPromise());
656     }
657 
658     /**
659      * Sends an SSL {@code close_notify} message to the specified channel and
660      * destroys the underlying {@link SSLEngine}. This will <strong>not</strong> close the underlying
661      * {@link Channel}. If you want to also close the {@link Channel} use {@link Channel#close()} or
662      * {@link ChannelHandlerContext#close()}
663      */
664     public ChannelFuture closeOutbound(final ChannelPromise promise) {
665         final ChannelHandlerContext ctx = this.ctx;
666         if (ctx.executor().inEventLoop()) {
667             closeOutbound0(promise);
668         } else {
669             ctx.executor().execute(new Runnable() {
670                 @Override
671                 public void run() {
672                     closeOutbound0(promise);
673                 }
674             });
675         }
676         return promise;
677     }
678 
679     private void closeOutbound0(ChannelPromise promise) {
680         setState(STATE_OUTBOUND_CLOSED);
681         engine.closeOutbound();
682         try {
683             flush(ctx, promise);
684         } catch (Exception e) {
685             if (!promise.tryFailure(e)) {
686                 logger.warn("{} flush() raised a masked exception.", ctx.channel(), e);
687             }
688         }
689     }
690 
691     /**
692      * Return the {@link Future} that will get notified if the inbound of the {@link SSLEngine} is closed.
693      *
694      * This method will return the same {@link Future} all the time.
695      *
696      * @see SSLEngine
697      */
698     public Future<Channel> sslCloseFuture() {
699         return sslClosePromise;
700     }
701 
702     @Override
703     public void handlerRemoved0(ChannelHandlerContext ctx) throws Exception {
704         try {
705             if (pendingUnencryptedWrites != null && !pendingUnencryptedWrites.isEmpty()) {
706                 // Check if queue is not empty first because create a new ChannelException is expensive
707                 pendingUnencryptedWrites.releaseAndFailAll(ctx,
708                   new ChannelException("Pending write on removal of SslHandler"));
709             }
710             pendingUnencryptedWrites = null;
711 
712             SSLException cause = null;
713 
714             // If the handshake or SSLEngine closure is not done yet we should fail corresponding promise and
715             // notify the rest of the
716             // pipeline.
717             if (!handshakePromise.isDone()) {
718                 cause = new SSLHandshakeException("SslHandler removed before handshake completed");
719                 if (handshakePromise.tryFailure(cause)) {
720                     ctx.fireUserEventTriggered(new SslHandshakeCompletionEvent(cause));
721                 }
722             }
723             if (!sslClosePromise.isDone()) {
724                 if (cause == null) {
725                     cause = new SSLException("SslHandler removed before SSLEngine was closed");
726                 }
727                 notifyClosePromise(cause);
728             }
729         } finally {
730             ReferenceCountUtil.release(engine);
731         }
732     }
733 
734     @Override
735     public void bind(ChannelHandlerContext ctx, SocketAddress localAddress, ChannelPromise promise) throws Exception {
736         ctx.bind(localAddress, promise);
737     }
738 
739     @Override
740     public void connect(ChannelHandlerContext ctx, SocketAddress remoteAddress, SocketAddress localAddress,
741                         ChannelPromise promise) throws Exception {
742         ctx.connect(remoteAddress, localAddress, promise);
743     }
744 
745     @Override
746     public void deregister(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception {
747         ctx.deregister(promise);
748     }
749 
750     @Override
751     public void disconnect(final ChannelHandlerContext ctx,
752                            final ChannelPromise promise) throws Exception {
753         closeOutboundAndChannel(ctx, promise, true);
754     }
755 
756     @Override
757     public void close(final ChannelHandlerContext ctx,
758                       final ChannelPromise promise) throws Exception {
759         closeOutboundAndChannel(ctx, promise, false);
760     }
761 
762     @Override
763     public void read(ChannelHandlerContext ctx) throws Exception {
764         if (!handshakePromise.isDone()) {
765             setState(STATE_READ_DURING_HANDSHAKE);
766         }
767 
768         ctx.read();
769     }
770 
771     private static IllegalStateException newPendingWritesNullException() {
772         return new IllegalStateException("pendingUnencryptedWrites is null, handlerRemoved0 called?");
773     }
774 
775     @Override
776     public void write(final ChannelHandlerContext ctx, Object msg, ChannelPromise promise) throws Exception {
777         if (!(msg instanceof ByteBuf)) {
778             UnsupportedMessageTypeException exception = new UnsupportedMessageTypeException(msg, ByteBuf.class);
779             ReferenceCountUtil.safeRelease(msg);
780             promise.setFailure(exception);
781         } else if (pendingUnencryptedWrites == null) {
782             ReferenceCountUtil.safeRelease(msg);
783             promise.setFailure(newPendingWritesNullException());
784         } else {
785             pendingUnencryptedWrites.add((ByteBuf) msg, promise);
786         }
787     }
788 
789     @Override
790     public void flush(ChannelHandlerContext ctx) throws Exception {
791         // Do not encrypt the first write request if this handler is
792         // created with startTLS flag turned on.
793         if (startTls && !isStateSet(STATE_SENT_FIRST_MESSAGE)) {
794             setState(STATE_SENT_FIRST_MESSAGE);
795             pendingUnencryptedWrites.writeAndRemoveAll(ctx);
796             forceFlush(ctx);
797             // Explicit start handshake processing once we send the first message. This will also ensure
798             // we will schedule the timeout if needed.
799             startHandshakeProcessing(true);
800             return;
801         }
802 
803         if (isStateSet(STATE_PROCESS_TASK)) {
804             return;
805         }
806 
807         try {
808             wrapAndFlush(ctx);
809         } catch (Throwable cause) {
810             setHandshakeFailure(ctx, cause);
811             PlatformDependent.throwException(cause);
812         }
813     }
814 
815     private void wrapAndFlush(ChannelHandlerContext ctx) throws SSLException {
816         if (pendingUnencryptedWrites.isEmpty()) {
817             // It's important to NOT use a voidPromise here as the user
818             // may want to add a ChannelFutureListener to the ChannelPromise later.
819             //
820             // See https://github.com/netty/netty/issues/3364
821             pendingUnencryptedWrites.add(Unpooled.EMPTY_BUFFER, ctx.newPromise());
822         }
823         if (!handshakePromise.isDone()) {
824             setState(STATE_FLUSHED_BEFORE_HANDSHAKE);
825         }
826         try {
827             wrap(ctx, false);
828         } finally {
829             // We may have written some parts of data before an exception was thrown so ensure we always flush.
830             // See https://github.com/netty/netty/issues/3900#issuecomment-172481830
831             forceFlush(ctx);
832         }
833     }
834 
835     // This method will not call setHandshakeFailure(...) !
836     private void wrap(ChannelHandlerContext ctx, boolean inUnwrap) throws SSLException {
837         ByteBuf out = null;
838         ByteBufAllocator alloc = ctx.alloc();
839         try {
840             final int wrapDataSize = this.wrapDataSize;
841             // Only continue to loop if the handler was not removed in the meantime.
842             // See https://github.com/netty/netty/issues/5860
843             outer: while (!ctx.isRemoved()) {
844                 ChannelPromise promise = ctx.newPromise();
845                 ByteBuf buf = wrapDataSize > 0 ?
846                         pendingUnencryptedWrites.remove(alloc, wrapDataSize, promise) :
847                         pendingUnencryptedWrites.removeFirst(promise);
848                 if (buf == null) {
849                     break;
850                 }
851 
852                 SSLEngineResult result;
853 
854                 try {
855                     if (buf.readableBytes() > MAX_PLAINTEXT_LENGTH) {
856                         // If we pulled a buffer larger than the supported packet size, we can slice it up and
857                         // iteratively, encrypting multiple packets into a single larger buffer. This substantially
858                         // saves on allocations for large responses. Here we estimate how large of a buffer we need.
859                         // If we overestimate a bit, that's fine. If we underestimate, we'll simply re-enqueue the
860                         // remaining buffer and get it on the next outer loop.
861                         int readableBytes = buf.readableBytes();
862                         int numPackets = readableBytes / MAX_PLAINTEXT_LENGTH;
863                         if (readableBytes % MAX_PLAINTEXT_LENGTH != 0) {
864                             numPackets += 1;
865                         }
866 
867                         if (out == null) {
868                             out = allocateOutNetBuf(ctx, readableBytes, buf.nioBufferCount() + numPackets);
869                         }
870                         result = wrapMultiple(alloc, engine, buf, out);
871                     } else {
872                         if (out == null) {
873                             out = allocateOutNetBuf(ctx, buf.readableBytes(), buf.nioBufferCount());
874                         }
875                         result = wrap(alloc, engine, buf, out);
876                     }
877                 } catch (SSLException e) {
878                     // Either wrapMultiple(...) or wrap(...) did throw. In this case we need to release the buffer
879                     // that we removed from pendingUnencryptedWrites before failing the promise and rethrowing it.
880                     // Failing to do so would result in a buffer leak.
881                     // See https://github.com/netty/netty/issues/14644
882                     //
883                     // We don't need to release out here as this is done in a finally block already.
884                     buf.release();
885                     promise.setFailure(e);
886                     throw e;
887                 }
888 
889                 if (buf.isReadable()) {
890                     pendingUnencryptedWrites.addFirst(buf, promise);
891                     // When we add the buffer/promise pair back we need to be sure we don't complete the promise
892                     // later. We only complete the promise if the buffer is completely consumed.
893                     promise = null;
894                 } else {
895                     buf.release();
896                 }
897 
898                 // We need to write any data before we invoke any methods which may trigger re-entry, otherwise
899                 // writes may occur out of order and TLS sequencing may be off (e.g. SSLV3_ALERT_BAD_RECORD_MAC).
900                 if (out.isReadable()) {
901                     final ByteBuf b = out;
902                     out = null;
903                     if (promise != null) {
904                         ctx.write(b, promise);
905                     } else {
906                         ctx.write(b);
907                     }
908                 } else if (promise != null) {
909                     ctx.write(Unpooled.EMPTY_BUFFER, promise);
910                 }
911                 // else out is not readable we can re-use it and so save an extra allocation
912 
913                 if (result.getStatus() == Status.CLOSED) {
914                     // First check if there is any write left that needs to be failed, if there is none we don't need
915                     // to create a new exception or obtain an existing one.
916                     if (!pendingUnencryptedWrites.isEmpty()) {
917                         // Make a best effort to preserve any exception that way previously encountered from the
918                         // handshake or the transport, else fallback to a general error.
919                         Throwable exception = handshakePromise.cause();
920                         if (exception == null) {
921                             exception = sslClosePromise.cause();
922                             if (exception == null) {
923                                 exception = new SslClosedEngineException("SSLEngine closed already");
924                             }
925                         }
926                         pendingUnencryptedWrites.releaseAndFailAll(ctx, exception);
927                     }
928 
929                     return;
930                 } else {
931                     switch (result.getHandshakeStatus()) {
932                         case NEED_TASK:
933                             if (!runDelegatedTasks(inUnwrap)) {
934                                 // We scheduled a task on the delegatingTaskExecutor, so stop processing as we will
935                                 // resume once the task completes.
936                                 break outer;
937                             }
938                             break;
939                         case FINISHED:
940                         case NOT_HANDSHAKING: // work around for android bug that skips the FINISHED state.
941                             setHandshakeSuccess();
942                             break;
943                         case NEED_WRAP:
944                             // If we are expected to wrap again and we produced some data we need to ensure there
945                             // is something in the queue to process as otherwise we will not try again before there
946                             // was more added. Failing to do so may fail to produce an alert that can be
947                             // consumed by the remote peer.
948                             if (result.bytesProduced() > 0 && pendingUnencryptedWrites.isEmpty()) {
949                                 pendingUnencryptedWrites.add(Unpooled.EMPTY_BUFFER);
950                             }
951                             break;
952                         case NEED_UNWRAP:
953                             // The underlying engine is starving so we need to feed it with more data.
954                             // See https://github.com/netty/netty/pull/5039
955                             readIfNeeded(ctx);
956                             return;
957                         default:
958                             throw new IllegalStateException(
959                                     "Unknown handshake status: " + result.getHandshakeStatus());
960                     }
961                 }
962             }
963         } finally {
964             if (out != null) {
965                 out.release();
966             }
967             if (inUnwrap) {
968                 setState(STATE_NEEDS_FLUSH);
969             }
970         }
971     }
972 
973     /**
974      * This method will not call
975      * {@link #setHandshakeFailure(ChannelHandlerContext, Throwable, boolean, boolean, boolean)} or
976      * {@link #setHandshakeFailure(ChannelHandlerContext, Throwable)}.
977      * @return {@code true} if this method ends on {@link SSLEngineResult.HandshakeStatus#NOT_HANDSHAKING}.
978      */
979     private boolean wrapNonAppData(final ChannelHandlerContext ctx, boolean inUnwrap) throws SSLException {
980         ByteBuf out = null;
981         ByteBufAllocator alloc = ctx.alloc();
982         try {
983             // Only continue to loop if the handler was not removed in the meantime.
984             // See https://github.com/netty/netty/issues/5860
985             outer: while (!ctx.isRemoved()) {
986                 if (out == null) {
987                     // As this is called for the handshake we have no real idea how big the buffer needs to be.
988                     // That said 2048 should give us enough room to include everything like ALPN / NPN data.
989                     // If this is not enough we will increase the buffer in wrap(...).
990                     out = allocateOutNetBuf(ctx, 2048, 1);
991                 }
992                 SSLEngineResult result = wrap(alloc, engine, Unpooled.EMPTY_BUFFER, out);
993                 if (result.bytesProduced() > 0) {
994                     ctx.write(out).addListener(new ChannelFutureListener() {
995                         @Override
996                         public void operationComplete(ChannelFuture future) {
997                             Throwable cause = future.cause();
998                             if (cause != null) {
999                                 setHandshakeFailureTransportFailure(ctx, cause);
1000                             }
1001                         }
1002                     });
1003                     if (inUnwrap) {
1004                         setState(STATE_NEEDS_FLUSH);
1005                     }
1006                     out = null;
1007                 }
1008 
1009                 HandshakeStatus status = result.getHandshakeStatus();
1010                 switch (status) {
1011                     case FINISHED:
1012                         // We may be here because we read data and discovered the remote peer initiated a renegotiation
1013                         // and this write is to complete the new handshake. The user may have previously done a
1014                         // writeAndFlush which wasn't able to wrap data due to needing the pending handshake, so we
1015                         // attempt to wrap application data here if any is pending.
1016                         if (setHandshakeSuccess() && inUnwrap && !pendingUnencryptedWrites.isEmpty()) {
1017                             wrap(ctx, true);
1018                         }
1019                         return false;
1020                     case NEED_TASK:
1021                         if (!runDelegatedTasks(inUnwrap)) {
1022                             // We scheduled a task on the delegatingTaskExecutor, so stop processing as we will
1023                             // resume once the task completes.
1024                             break outer;
1025                         }
1026                         break;
1027                     case NEED_UNWRAP:
1028                         if (inUnwrap || unwrapNonAppData(ctx) <= 0) {
1029                             // If we asked for a wrap, the engine requested an unwrap, and we are in unwrap there is
1030                             // no use in trying to call wrap again because we have already attempted (or will after we
1031                             // return) to feed more data to the engine.
1032                             return false;
1033                         }
1034                         break;
1035                     case NEED_WRAP:
1036                         break;
1037                     case NOT_HANDSHAKING:
1038                         if (setHandshakeSuccess() && inUnwrap && !pendingUnencryptedWrites.isEmpty()) {
1039                             wrap(ctx, true);
1040                         }
1041                         // Workaround for TLS False Start problem reported at:
1042                         // https://github.com/netty/netty/issues/1108#issuecomment-14266970
1043                         if (!inUnwrap) {
1044                             unwrapNonAppData(ctx);
1045                         }
1046                         return true;
1047                     default:
1048                         throw new IllegalStateException("Unknown handshake status: " + result.getHandshakeStatus());
1049                 }
1050 
1051                 // Check if did not produce any bytes and if so break out of the loop, but only if we did not process
1052                 // a task as last action. It's fine to not produce any data as part of executing a task.
1053                 if (result.bytesProduced() == 0 && status != HandshakeStatus.NEED_TASK) {
1054                     break;
1055                 }
1056 
1057                 // It should not consume empty buffers when it is not handshaking
1058                 // Fix for Android, where it was encrypting empty buffers even when not handshaking
1059                 if (result.bytesConsumed() == 0 && result.getHandshakeStatus() == HandshakeStatus.NOT_HANDSHAKING) {
1060                     break;
1061                 }
1062             }
1063         }  finally {
1064             if (out != null) {
1065                 out.release();
1066             }
1067         }
1068         return false;
1069     }
1070 
1071     private SSLEngineResult wrapMultiple(ByteBufAllocator alloc, SSLEngine engine, ByteBuf in, ByteBuf out)
1072         throws SSLException {
1073         SSLEngineResult result = null;
1074 
1075         do {
1076             int nextSliceSize = Math.min(MAX_PLAINTEXT_LENGTH, in.readableBytes());
1077             // This call over-estimates, because we are slicing and not every nioBuffer will be part of
1078             // every slice. We could improve the estimate by having an nioBufferCount(offset, length).
1079             int nextOutSize = engineType.calculateRequiredOutBufSpace(this, nextSliceSize, in.nioBufferCount());
1080 
1081             if (!out.isWritable(nextOutSize)) {
1082                 if (result != null) {
1083                     // We underestimated the space needed to encrypt the entire in buf. Break out, and
1084                     // upstream will re-enqueue the buffer for later.
1085                     break;
1086                 }
1087                 // This shouldn't happen, as the out buf was properly sized for at least packetLength
1088                 // prior to calling wrap.
1089                 out.ensureWritable(nextOutSize);
1090             }
1091 
1092             ByteBuf wrapBuf = in.readSlice(nextSliceSize);
1093             result = wrap(alloc, engine, wrapBuf, out);
1094 
1095             if (result.getStatus() == Status.CLOSED) {
1096                 // If the engine gets closed, we can exit out early. Otherwise, we'll do a full handling of
1097                 // possible results once finished.
1098                 break;
1099             }
1100 
1101             if (wrapBuf.isReadable()) {
1102                 // There may be some left-over, in which case we can just pick it up next loop, so reset the original
1103                 // reader index so its included again in the next slice.
1104                 in.readerIndex(in.readerIndex() - wrapBuf.readableBytes());
1105             }
1106         } while (in.readableBytes() > 0);
1107 
1108         return result;
1109     }
1110 
1111     private SSLEngineResult wrap(ByteBufAllocator alloc, SSLEngine engine, ByteBuf in, ByteBuf out)
1112             throws SSLException {
1113         ByteBuf newDirectIn = null;
1114         try {
1115             int readerIndex = in.readerIndex();
1116             int readableBytes = in.readableBytes();
1117 
1118             // We will call SslEngine.wrap(ByteBuffer[], ByteBuffer) to allow efficient handling of
1119             // CompositeByteBuf without force an extra memory copy when CompositeByteBuffer.nioBuffer() is called.
1120             final ByteBuffer[] in0;
1121             if (in.isDirect() || !engineType.wantsDirectBuffer) {
1122                 // As CompositeByteBuf.nioBufferCount() can be expensive (as it needs to check all composed ByteBuf
1123                 // to calculate the count) we will just assume a CompositeByteBuf contains more then 1 ByteBuf.
1124                 // The worst that can happen is that we allocate an extra ByteBuffer[] in CompositeByteBuf.nioBuffers()
1125                 // which is better then walking the composed ByteBuf in most cases.
1126                 if (!(in instanceof CompositeByteBuf) && in.nioBufferCount() == 1) {
1127                     in0 = singleBuffer;
1128                     // We know its only backed by 1 ByteBuffer so use internalNioBuffer to keep object allocation
1129                     // to a minimum.
1130                     in0[0] = in.internalNioBuffer(readerIndex, readableBytes);
1131                 } else {
1132                     in0 = in.nioBuffers();
1133                 }
1134             } else {
1135                 // We could even go further here and check if its a CompositeByteBuf and if so try to decompose it and
1136                 // only replace the ByteBuffer that are not direct. At the moment we just will replace the whole
1137                 // CompositeByteBuf to keep the complexity to a minimum
1138                 newDirectIn = alloc.directBuffer(readableBytes);
1139                 newDirectIn.writeBytes(in, readerIndex, readableBytes);
1140                 in0 = singleBuffer;
1141                 in0[0] = newDirectIn.internalNioBuffer(newDirectIn.readerIndex(), readableBytes);
1142             }
1143 
1144             for (;;) {
1145                 // Use toByteBuffer(...) which might be able to return the internal ByteBuffer and so reduce
1146                 // allocations.
1147                 ByteBuffer out0 = toByteBuffer(out, out.writerIndex(), out.writableBytes());
1148                 SSLEngineResult result = engine.wrap(in0, out0);
1149                 in.skipBytes(result.bytesConsumed());
1150                 out.writerIndex(out.writerIndex() + result.bytesProduced());
1151 
1152                 if (result.getStatus() == Status.BUFFER_OVERFLOW) {
1153                     out.ensureWritable(engine.getSession().getPacketBufferSize());
1154                 } else {
1155                     return result;
1156                 }
1157             }
1158         } finally {
1159             // Null out to allow GC of ByteBuffer
1160             singleBuffer[0] = null;
1161 
1162             if (newDirectIn != null) {
1163                 newDirectIn.release();
1164             }
1165         }
1166     }
1167 
1168     @Override
1169     public void channelInactive(ChannelHandlerContext ctx) throws Exception {
1170         boolean handshakeFailed = handshakePromise.cause() != null;
1171 
1172         // Channel closed, we will generate 'ClosedChannelException' now.
1173         ClosedChannelException exception = new ClosedChannelException();
1174 
1175         // Add a supressed exception if the handshake was not completed yet.
1176         if (isStateSet(STATE_HANDSHAKE_STARTED) && !handshakePromise.isDone()) {
1177             ThrowableUtil.addSuppressed(exception, StacklessSSLHandshakeException.newInstance(
1178                     "Connection closed while SSL/TLS handshake was in progress",
1179                     SslHandler.class, "channelInactive"));
1180         }
1181 
1182         // Make sure to release SSLEngine,
1183         // and notify the handshake future if the connection has been closed during handshake.
1184         setHandshakeFailure(ctx, exception, !isStateSet(STATE_OUTBOUND_CLOSED), isStateSet(STATE_HANDSHAKE_STARTED),
1185                 false);
1186 
1187         // Ensure we always notify the sslClosePromise as well
1188         notifyClosePromise(exception);
1189 
1190         try {
1191             super.channelInactive(ctx);
1192         } catch (DecoderException e) {
1193             if (!handshakeFailed || !(e.getCause() instanceof SSLException)) {
1194                 // We only rethrow the exception if the handshake did not fail before channelInactive(...) was called
1195                 // as otherwise this may produce duplicated failures as super.channelInactive(...) will also call
1196                 // channelRead(...).
1197                 //
1198                 // See https://github.com/netty/netty/issues/10119
1199                 throw e;
1200             }
1201         }
1202     }
1203 
1204     @Override
1205     public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) throws Exception {
1206         if (ignoreException(cause)) {
1207             // It is safe to ignore the 'connection reset by peer' or
1208             // 'broken pipe' error after sending close_notify.
1209             if (logger.isDebugEnabled()) {
1210                 logger.debug(
1211                         "{} Swallowing a harmless 'connection reset by peer / broken pipe' error that occurred " +
1212                         "while writing close_notify in response to the peer's close_notify", ctx.channel(), cause);
1213             }
1214 
1215             // Close the connection explicitly just in case the transport
1216             // did not close the connection automatically.
1217             if (ctx.channel().isActive()) {
1218                 ctx.close();
1219             }
1220         } else {
1221             ctx.fireExceptionCaught(cause);
1222         }
1223     }
1224 
1225     /**
1226      * Checks if the given {@link Throwable} can be ignore and just "swallowed"
1227      *
1228      * When an ssl connection is closed a close_notify message is sent.
1229      * After that the peer also sends close_notify however, it's not mandatory to receive
1230      * the close_notify. The party who sent the initial close_notify can close the connection immediately
1231      * then the peer will get connection reset error.
1232      *
1233      */
1234     private boolean ignoreException(Throwable t) {
1235         if (!(t instanceof SSLException) && t instanceof IOException && sslClosePromise.isDone()) {
1236             String message = t.getMessage();
1237 
1238             // first try to match connection reset / broke peer based on the regex. This is the fastest way
1239             // but may fail on different jdk impls or OS's
1240             if (message != null && IGNORABLE_ERROR_MESSAGE.matcher(message).matches()) {
1241                 return true;
1242             }
1243 
1244             // Inspect the StackTraceElements to see if it was a connection reset / broken pipe or not
1245             StackTraceElement[] elements = t.getStackTrace();
1246             for (StackTraceElement element: elements) {
1247                 String classname = element.getClassName();
1248                 String methodname = element.getMethodName();
1249 
1250                 // skip all classes that belong to the io.netty package
1251                 if (classname.startsWith("io.netty.")) {
1252                     continue;
1253                 }
1254 
1255                 // check if the method name is read if not skip it
1256                 if (!"read".equals(methodname)) {
1257                     continue;
1258                 }
1259 
1260                 // This will also match against SocketInputStream which is used by openjdk 7 and maybe
1261                 // also others
1262                 if (IGNORABLE_CLASS_IN_STACK.matcher(classname).matches()) {
1263                     return true;
1264                 }
1265 
1266                 try {
1267                     // No match by now.. Try to load the class via classloader and inspect it.
1268                     // This is mainly done as other JDK implementations may differ in name of
1269                     // the impl.
1270                     Class<?> clazz = PlatformDependent.getClassLoader(getClass()).loadClass(classname);
1271 
1272                     if (SocketChannel.class.isAssignableFrom(clazz)
1273                             || DatagramChannel.class.isAssignableFrom(clazz)) {
1274                         return true;
1275                     }
1276 
1277                     // also match against SctpChannel via String matching as it may not present.
1278                     if (PlatformDependent.javaVersion() >= 7
1279                             && "com.sun.nio.sctp.SctpChannel".equals(clazz.getSuperclass().getName())) {
1280                         return true;
1281                     }
1282                 } catch (Throwable cause) {
1283                     if (logger.isDebugEnabled()) {
1284                         logger.debug("Unexpected exception while loading class {} classname {}",
1285                                 getClass(), classname, cause);
1286                     }
1287                 }
1288             }
1289         }
1290 
1291         return false;
1292     }
1293 
1294     /**
1295      * Returns {@code true} if the given {@link ByteBuf} is encrypted. Be aware that this method
1296      * will not increase the readerIndex of the given {@link ByteBuf}.
1297      *
1298      * @param   buffer
1299      *                  The {@link ByteBuf} to read from. Be aware that it must have at least 5 bytes to read,
1300      *                  otherwise it will throw an {@link IllegalArgumentException}.
1301      * @return encrypted
1302      *                  {@code true} if the {@link ByteBuf} is encrypted, {@code false} otherwise.
1303      * @throws IllegalArgumentException
1304      *                  Is thrown if the given {@link ByteBuf} has not at least 5 bytes to read.
1305      * @deprecated use {@link #isEncrypted(ByteBuf, boolean)}.
1306      */
1307     @Deprecated
1308     public static boolean isEncrypted(ByteBuf buffer) {
1309         return isEncrypted(buffer, false);
1310     }
1311 
1312     /**
1313      * Returns {@code true} if the given {@link ByteBuf} is encrypted. Be aware that this method
1314      * will not increase the readerIndex of the given {@link ByteBuf}.
1315      *
1316      * @param   buffer
1317      *                  The {@link ByteBuf} to read from. Be aware that it must have at least 5 bytes to read,
1318      *                  otherwise it will throw an {@link IllegalArgumentException}.
1319      * @return encrypted
1320      *                  {@code true} if the {@link ByteBuf} is encrypted, {@code false} otherwise.
1321      * @param probeSSLv2
1322      *                  {@code true} if the input {@code buffer} might be SSLv2. If {@code true} is used this
1323      *                  methods might produce false-positives in some cases so it's strongly suggested to
1324      *                  use {@code false}.
1325      * @throws IllegalArgumentException
1326      *                  Is thrown if the given {@link ByteBuf} has not at least 5 bytes to read.
1327      */
1328     public static boolean isEncrypted(ByteBuf buffer, boolean probeSSLv2) {
1329         if (buffer.readableBytes() < SslUtils.SSL_RECORD_HEADER_LENGTH) {
1330             throw new IllegalArgumentException(
1331                     "buffer must have at least " + SslUtils.SSL_RECORD_HEADER_LENGTH + " readable bytes");
1332         }
1333         return getEncryptedPacketLength(buffer, buffer.readerIndex(), probeSSLv2) != SslUtils.NOT_ENCRYPTED;
1334     }
1335 
1336     private void decodeJdkCompatible(ChannelHandlerContext ctx, ByteBuf in) throws NotSslRecordException {
1337         int packetLength = this.packetLength;
1338         // If we calculated the length of the current SSL record before, use that information.
1339         if (packetLength > 0) {
1340             if (in.readableBytes() < packetLength) {
1341                 return;
1342             }
1343         } else {
1344             // Get the packet length and wait until we get a packets worth of data to unwrap.
1345             final int readableBytes = in.readableBytes();
1346             if (readableBytes < SslUtils.SSL_RECORD_HEADER_LENGTH) {
1347                 return;
1348             }
1349             packetLength = getEncryptedPacketLength(in, in.readerIndex(), true);
1350             if (packetLength == SslUtils.NOT_ENCRYPTED) {
1351                 // Not an SSL/TLS packet
1352                 NotSslRecordException e = new NotSslRecordException(
1353                         "not an SSL/TLS record: " + ByteBufUtil.hexDump(in));
1354                 in.skipBytes(in.readableBytes());
1355 
1356                 // First fail the handshake promise as we may need to have access to the SSLEngine which may
1357                 // be released because the user will remove the SslHandler in an exceptionCaught(...) implementation.
1358                 setHandshakeFailure(ctx, e);
1359 
1360                 throw e;
1361             }
1362             if (packetLength == NOT_ENOUGH_DATA) {
1363                 return;
1364             }
1365             assert packetLength > 0;
1366             if (packetLength > readableBytes) {
1367                 // wait until the whole packet can be read
1368                 this.packetLength = packetLength;
1369                 return;
1370             }
1371         }
1372 
1373         // Reset the state of this class so we can get the length of the next packet. We assume the entire packet will
1374         // be consumed by the SSLEngine.
1375         this.packetLength = 0;
1376         try {
1377             final int bytesConsumed = unwrap(ctx, in, packetLength);
1378             if (bytesConsumed != packetLength && !engine.isInboundDone()) {
1379                 // The JDK equivalent of getEncryptedPacketLength has some optimizations and can behave slightly
1380                 // differently to ours, but this should always be a sign of bad input data.
1381                 throw new NotSslRecordException();
1382             }
1383         } catch (Throwable cause) {
1384             handleUnwrapThrowable(ctx, cause);
1385         }
1386     }
1387 
1388     private void decodeNonJdkCompatible(ChannelHandlerContext ctx, ByteBuf in) {
1389         try {
1390             unwrap(ctx, in, in.readableBytes());
1391         } catch (Throwable cause) {
1392             handleUnwrapThrowable(ctx, cause);
1393         }
1394     }
1395 
1396     private void handleUnwrapThrowable(ChannelHandlerContext ctx, Throwable cause) {
1397         try {
1398             // We should attempt to notify the handshake failure before writing any pending data. If we are in unwrap
1399             // and failed during the handshake process, and we attempt to wrap, then promises will fail, and if
1400             // listeners immediately close the Channel then we may end up firing the handshake event after the Channel
1401             // has been closed.
1402             if (handshakePromise.tryFailure(cause)) {
1403                 ctx.fireUserEventTriggered(new SslHandshakeCompletionEvent(cause));
1404             }
1405 
1406             // Let's check if the handler was removed in the meantime and so pendingUnencryptedWrites is null.
1407             if (pendingUnencryptedWrites != null) {
1408                 // We need to flush one time as there may be an alert that we should send to the remote peer because
1409                 // of the SSLException reported here.
1410                 wrapAndFlush(ctx);
1411             }
1412         } catch (SSLException ex) {
1413             logger.debug("SSLException during trying to call SSLEngine.wrap(...)" +
1414                     " because of an previous SSLException, ignoring...", ex);
1415         } finally {
1416             // ensure we always flush and close the channel.
1417             setHandshakeFailure(ctx, cause, true, false, true);
1418         }
1419         PlatformDependent.throwException(cause);
1420     }
1421 
1422     @Override
1423     protected void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) throws SSLException {
1424         if (isStateSet(STATE_PROCESS_TASK)) {
1425             return;
1426         }
1427         if (jdkCompatibilityMode) {
1428             decodeJdkCompatible(ctx, in);
1429         } else {
1430             decodeNonJdkCompatible(ctx, in);
1431         }
1432     }
1433 
1434     @Override
1435     public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
1436         channelReadComplete0(ctx);
1437     }
1438 
1439     private void channelReadComplete0(ChannelHandlerContext ctx) {
1440         // Discard bytes of the cumulation buffer if needed.
1441         discardSomeReadBytes();
1442 
1443         flushIfNeeded(ctx);
1444         readIfNeeded(ctx);
1445 
1446         clearState(STATE_FIRE_CHANNEL_READ);
1447         ctx.fireChannelReadComplete();
1448     }
1449 
1450     private void readIfNeeded(ChannelHandlerContext ctx) {
1451         // If handshake is not finished yet, we need more data.
1452         if (!ctx.channel().config().isAutoRead() &&
1453                 (!isStateSet(STATE_FIRE_CHANNEL_READ) || !handshakePromise.isDone())) {
1454             // No auto-read used and no message passed through the ChannelPipeline or the handshake was not complete
1455             // yet, which means we need to trigger the read to ensure we not encounter any stalls.
1456             ctx.read();
1457         }
1458     }
1459 
1460     private void flushIfNeeded(ChannelHandlerContext ctx) {
1461         if (isStateSet(STATE_NEEDS_FLUSH)) {
1462             forceFlush(ctx);
1463         }
1464     }
1465 
1466     /**
1467      * Calls {@link SSLEngine#unwrap(ByteBuffer, ByteBuffer)} with an empty buffer to handle handshakes, etc.
1468      */
1469     private int unwrapNonAppData(ChannelHandlerContext ctx) throws SSLException {
1470         return unwrap(ctx, Unpooled.EMPTY_BUFFER, 0);
1471     }
1472 
1473     /**
1474      * Unwraps inbound SSL records.
1475      */
1476     private int unwrap(ChannelHandlerContext ctx, ByteBuf packet, int length) throws SSLException {
1477         final int originalLength = length;
1478         boolean wrapLater = false;
1479         boolean notifyClosure = false;
1480         boolean executedRead = false;
1481         ByteBuf decodeOut = allocate(ctx, length);
1482         try {
1483             // Only continue to loop if the handler was not removed in the meantime.
1484             // See https://github.com/netty/netty/issues/5860
1485             do {
1486                 final SSLEngineResult result = engineType.unwrap(this, packet, length, decodeOut);
1487                 final Status status = result.getStatus();
1488                 final HandshakeStatus handshakeStatus = result.getHandshakeStatus();
1489                 final int produced = result.bytesProduced();
1490                 final int consumed = result.bytesConsumed();
1491 
1492                 // Skip bytes now in case unwrap is called in a re-entry scenario. For example LocalChannel.read()
1493                 // may entry this method in a re-entry fashion and if the peer is writing into a shared buffer we may
1494                 // unwrap the same data multiple times.
1495                 packet.skipBytes(consumed);
1496                 length -= consumed;
1497 
1498                 // The expected sequence of events is:
1499                 // 1. Notify of handshake success
1500                 // 2. fireChannelRead for unwrapped data
1501                 if (handshakeStatus == HandshakeStatus.FINISHED || handshakeStatus == HandshakeStatus.NOT_HANDSHAKING) {
1502                     wrapLater |= (decodeOut.isReadable() ?
1503                             setHandshakeSuccessUnwrapMarkReentry() : setHandshakeSuccess()) ||
1504                             handshakeStatus == HandshakeStatus.FINISHED ||
1505                             // We need to check if pendingUnecryptedWrites is null as the SslHandler
1506                             // might have been removed in the meantime.
1507                             (pendingUnencryptedWrites != null  && !pendingUnencryptedWrites.isEmpty());
1508                 }
1509 
1510                 // Dispatch decoded data after we have notified of handshake success. If this method has been invoked
1511                 // in a re-entry fashion we execute a task on the executor queue to process after the stack unwinds
1512                 // to preserve order of events.
1513                 if (decodeOut.isReadable()) {
1514                     setState(STATE_FIRE_CHANNEL_READ);
1515                     if (isStateSet(STATE_UNWRAP_REENTRY)) {
1516                         executedRead = true;
1517                         executeChannelRead(ctx, decodeOut);
1518                     } else {
1519                         ctx.fireChannelRead(decodeOut);
1520                     }
1521                     decodeOut = null;
1522                 }
1523 
1524                 if (status == Status.CLOSED) {
1525                     notifyClosure = true; // notify about the CLOSED state of the SSLEngine. See #137
1526                 } else if (status == Status.BUFFER_OVERFLOW) {
1527                     if (decodeOut != null) {
1528                         decodeOut.release();
1529                     }
1530                     final int applicationBufferSize = engine.getSession().getApplicationBufferSize();
1531                     // Allocate a new buffer which can hold all the rest data and loop again.
1532                     // It may happen that applicationBufferSize < produced while there is still more to unwrap, in this
1533                     // case we will just allocate a new buffer with the capacity of applicationBufferSize and call
1534                     // unwrap again.
1535                     decodeOut = allocate(ctx, engineType.calculatePendingData(this, applicationBufferSize < produced ?
1536                             applicationBufferSize : applicationBufferSize - produced));
1537                     continue;
1538                 }
1539 
1540                 if (handshakeStatus == HandshakeStatus.NEED_TASK) {
1541                     boolean pending = runDelegatedTasks(true);
1542                     if (!pending) {
1543                         // We scheduled a task on the delegatingTaskExecutor, so stop processing as we will
1544                         // resume once the task completes.
1545                         //
1546                         // We break out of the loop only and do NOT return here as we still may need to notify
1547                         // about the closure of the SSLEngine.
1548                         wrapLater = false;
1549                         break;
1550                     }
1551                 } else if (handshakeStatus == HandshakeStatus.NEED_WRAP) {
1552                     // If the wrap operation transitions the status to NOT_HANDSHAKING and there is no more data to
1553                     // unwrap then the next call to unwrap will not produce any data. We can avoid the potentially
1554                     // costly unwrap operation and break out of the loop.
1555                     if (wrapNonAppData(ctx, true) && length == 0) {
1556                         break;
1557                     }
1558                 }
1559 
1560                 if (status == Status.BUFFER_UNDERFLOW ||
1561                         // If we processed NEED_TASK we should try again even we did not consume or produce anything.
1562                         handshakeStatus != HandshakeStatus.NEED_TASK && (consumed == 0 && produced == 0 ||
1563                                 (length == 0 && handshakeStatus == HandshakeStatus.NOT_HANDSHAKING))) {
1564                     if (handshakeStatus == HandshakeStatus.NEED_UNWRAP) {
1565                         // The underlying engine is starving so we need to feed it with more data.
1566                         // See https://github.com/netty/netty/pull/5039
1567                         readIfNeeded(ctx);
1568                     }
1569 
1570                     break;
1571                 } else if (decodeOut == null) {
1572                     decodeOut = allocate(ctx, length);
1573                 }
1574             } while (!ctx.isRemoved());
1575 
1576             if (isStateSet(STATE_FLUSHED_BEFORE_HANDSHAKE) && handshakePromise.isDone()) {
1577                 // We need to call wrap(...) in case there was a flush done before the handshake completed to ensure
1578                 // we do not stale.
1579                 //
1580                 // See https://github.com/netty/netty/pull/2437
1581                 clearState(STATE_FLUSHED_BEFORE_HANDSHAKE);
1582                 wrapLater = true;
1583             }
1584 
1585             if (wrapLater) {
1586                 wrap(ctx, true);
1587             }
1588         } finally {
1589             if (decodeOut != null) {
1590                 decodeOut.release();
1591             }
1592 
1593             if (notifyClosure) {
1594                 if (executedRead) {
1595                     executeNotifyClosePromise(ctx);
1596                 } else {
1597                     notifyClosePromise(null);
1598                 }
1599             }
1600         }
1601         return originalLength - length;
1602     }
1603 
1604     private boolean setHandshakeSuccessUnwrapMarkReentry() throws SSLException {
1605         // setHandshakeSuccess calls out to external methods which may trigger re-entry. We need to preserve ordering of
1606         // fireChannelRead for decodeOut relative to re-entry data.
1607         final boolean setReentryState = !isStateSet(STATE_UNWRAP_REENTRY);
1608         if (setReentryState) {
1609             setState(STATE_UNWRAP_REENTRY);
1610         }
1611         try {
1612             return setHandshakeSuccess();
1613         } finally {
1614             // It is unlikely this specific method will be re-entry because handshake completion is infrequent, but just
1615             // in case we only clear the state if we set it in the first place.
1616             if (setReentryState) {
1617                 clearState(STATE_UNWRAP_REENTRY);
1618             }
1619         }
1620     }
1621 
1622     private void executeNotifyClosePromise(final ChannelHandlerContext ctx) {
1623         try {
1624             ctx.executor().execute(new Runnable() {
1625                 @Override
1626                 public void run() {
1627                     notifyClosePromise(null);
1628                 }
1629             });
1630         } catch (RejectedExecutionException e) {
1631             notifyClosePromise(e);
1632         }
1633     }
1634 
1635     private void executeChannelRead(final ChannelHandlerContext ctx, final ByteBuf decodedOut) {
1636         try {
1637             ctx.executor().execute(new Runnable() {
1638                 @Override
1639                 public void run() {
1640                     ctx.fireChannelRead(decodedOut);
1641                 }
1642             });
1643         } catch (RejectedExecutionException e) {
1644             decodedOut.release();
1645             throw e;
1646         }
1647     }
1648 
1649     private static ByteBuffer toByteBuffer(ByteBuf out, int index, int len) {
1650         return out.nioBufferCount() == 1 ? out.internalNioBuffer(index, len) :
1651                 out.nioBuffer(index, len);
1652     }
1653 
1654     private static boolean inEventLoop(Executor executor) {
1655         return executor instanceof EventExecutor && ((EventExecutor) executor).inEventLoop();
1656     }
1657 
1658     /**
1659      * Will either run the delegated task directly calling {@link Runnable#run()} and return {@code true} or will
1660      * offload the delegated task using {@link Executor#execute(Runnable)} and return {@code false}.
1661      *
1662      * If the task is offloaded it will take care to resume its work on the {@link EventExecutor} once there are no
1663      * more tasks to process.
1664      */
1665     private boolean runDelegatedTasks(boolean inUnwrap) {
1666         if (delegatedTaskExecutor == ImmediateExecutor.INSTANCE || inEventLoop(delegatedTaskExecutor)) {
1667             // We should run the task directly in the EventExecutor thread and not offload at all. As we are on the
1668             // EventLoop we can just run all tasks at once.
1669             for (;;) {
1670                 Runnable task = engine.getDelegatedTask();
1671                 if (task == null) {
1672                     return true;
1673                 }
1674                 setState(STATE_PROCESS_TASK);
1675                 if (task instanceof AsyncRunnable) {
1676                     // Let's set the task to processing task before we try to execute it.
1677                     boolean pending = false;
1678                     try {
1679                         AsyncRunnable asyncTask = (AsyncRunnable) task;
1680                         AsyncTaskCompletionHandler completionHandler = new AsyncTaskCompletionHandler(inUnwrap);
1681                         asyncTask.run(completionHandler);
1682                         pending = completionHandler.resumeLater();
1683                         if (pending) {
1684                             return false;
1685                         }
1686                     } finally {
1687                         if (!pending) {
1688                             // The task has completed, lets clear the state. If it is not completed we will clear the
1689                             // state once it is.
1690                             clearState(STATE_PROCESS_TASK);
1691                         }
1692                     }
1693                 } else {
1694                     try {
1695                         task.run();
1696                     } finally {
1697                         clearState(STATE_PROCESS_TASK);
1698                     }
1699                 }
1700             }
1701         } else {
1702             executeDelegatedTask(inUnwrap);
1703             return false;
1704         }
1705     }
1706 
1707     private SslTasksRunner getTaskRunner(boolean inUnwrap) {
1708         return inUnwrap ? sslTaskRunnerForUnwrap : sslTaskRunner;
1709     }
1710 
1711     private void executeDelegatedTask(boolean inUnwrap) {
1712         executeDelegatedTask(getTaskRunner(inUnwrap));
1713     }
1714 
1715     private void executeDelegatedTask(SslTasksRunner task) {
1716         setState(STATE_PROCESS_TASK);
1717         try {
1718             delegatedTaskExecutor.execute(task);
1719         } catch (RejectedExecutionException e) {
1720             clearState(STATE_PROCESS_TASK);
1721             throw e;
1722         }
1723     }
1724 
1725     private final class AsyncTaskCompletionHandler implements Runnable {
1726         private final boolean inUnwrap;
1727         boolean didRun;
1728         boolean resumeLater;
1729 
1730         AsyncTaskCompletionHandler(boolean inUnwrap) {
1731             this.inUnwrap = inUnwrap;
1732         }
1733 
1734         @Override
1735         public void run() {
1736             didRun = true;
1737             if (resumeLater) {
1738                 getTaskRunner(inUnwrap).runComplete();
1739             }
1740         }
1741 
1742         boolean resumeLater() {
1743             if (!didRun) {
1744                 resumeLater = true;
1745                 return true;
1746             }
1747             return false;
1748         }
1749     }
1750 
1751     /**
1752      * {@link Runnable} that will be scheduled on the {@code delegatedTaskExecutor} and will take care
1753      * of resume work on the {@link EventExecutor} once the task was executed.
1754      */
1755     private final class SslTasksRunner implements Runnable {
1756         private final boolean inUnwrap;
1757         private final Runnable runCompleteTask = new Runnable() {
1758             @Override
1759             public void run() {
1760                 runComplete();
1761             }
1762         };
1763 
1764         SslTasksRunner(boolean inUnwrap) {
1765             this.inUnwrap = inUnwrap;
1766         }
1767 
1768         // Handle errors which happened during task processing.
1769         private void taskError(Throwable e) {
1770             if (inUnwrap) {
1771                 // As the error happened while the task was scheduled as part of unwrap(...) we also need to ensure
1772                 // we fire it through the pipeline as inbound error to be consistent with what we do in decode(...).
1773                 //
1774                 // This will also ensure we fail the handshake future and flush all produced data.
1775                 try {
1776                     handleUnwrapThrowable(ctx, e);
1777                 } catch (Throwable cause) {
1778                     safeExceptionCaught(cause);
1779                 }
1780             } else {
1781                 setHandshakeFailure(ctx, e);
1782                 forceFlush(ctx);
1783             }
1784         }
1785 
1786         // Try to call exceptionCaught(...)
1787         private void safeExceptionCaught(Throwable cause) {
1788             try {
1789                 exceptionCaught(ctx, wrapIfNeeded(cause));
1790             } catch (Throwable error) {
1791                 ctx.fireExceptionCaught(error);
1792             }
1793         }
1794 
1795         private Throwable wrapIfNeeded(Throwable cause) {
1796             if (!inUnwrap) {
1797                 // If we are not in unwrap(...) we can just rethrow without wrapping at all.
1798                 return cause;
1799             }
1800             // As the exception would have been triggered by an inbound operation we will need to wrap it in a
1801             // DecoderException to mimic what a decoder would do when decode(...) throws.
1802             return cause instanceof DecoderException ? cause : new DecoderException(cause);
1803         }
1804 
1805         private void tryDecodeAgain() {
1806             try {
1807                 channelRead(ctx, Unpooled.EMPTY_BUFFER);
1808             } catch (Throwable cause) {
1809                 safeExceptionCaught(cause);
1810             } finally {
1811                 // As we called channelRead(...) we also need to call channelReadComplete(...) which
1812                 // will ensure we either call ctx.fireChannelReadComplete() or will trigger a ctx.read() if
1813                 // more data is needed.
1814                 channelReadComplete0(ctx);
1815             }
1816         }
1817 
1818         /**
1819          * Executed after the wrapped {@code task} was executed via {@code delegatedTaskExecutor} to resume work
1820          * on the {@link EventExecutor}.
1821          */
1822         private void resumeOnEventExecutor() {
1823             assert ctx.executor().inEventLoop();
1824             clearState(STATE_PROCESS_TASK);
1825             try {
1826                 HandshakeStatus status = engine.getHandshakeStatus();
1827                 switch (status) {
1828                     // There is another task that needs to be executed and offloaded to the delegatingTaskExecutor as
1829                     // a result of this. Let's reschedule....
1830                     case NEED_TASK:
1831                         executeDelegatedTask(this);
1832 
1833                         break;
1834 
1835                     // The handshake finished, lets notify about the completion of it and resume processing.
1836                     case FINISHED:
1837                     // Not handshaking anymore, lets notify about the completion if not done yet and resume processing.
1838                     case NOT_HANDSHAKING:
1839                         setHandshakeSuccess(); // NOT_HANDSHAKING -> workaround for android skipping FINISHED state.
1840                         try {
1841                             // Lets call wrap to ensure we produce the alert if there is any pending and also to
1842                             // ensure we flush any queued data..
1843                             wrap(ctx, inUnwrap);
1844                         } catch (Throwable e) {
1845                             taskError(e);
1846                             return;
1847                         }
1848                         if (inUnwrap) {
1849                             // If we were in the unwrap call when the task was processed we should also try to unwrap
1850                             // non app data first as there may not anything left in the inbound buffer to process.
1851                             unwrapNonAppData(ctx);
1852                         }
1853 
1854                         // Flush now as we may have written some data as part of the wrap call.
1855                         forceFlush(ctx);
1856 
1857                         tryDecodeAgain();
1858                         break;
1859 
1860                     // We need more data so lets try to unwrap first and then call decode again which will feed us
1861                     // with buffered data (if there is any).
1862                     case NEED_UNWRAP:
1863                         try {
1864                             unwrapNonAppData(ctx);
1865                         } catch (SSLException e) {
1866                             handleUnwrapThrowable(ctx, e);
1867                             return;
1868                         }
1869                         tryDecodeAgain();
1870                         break;
1871 
1872                     // To make progress we need to call SSLEngine.wrap(...) which may produce more output data
1873                     // that will be written to the Channel.
1874                     case NEED_WRAP:
1875                         try {
1876                             if (!wrapNonAppData(ctx, false) && inUnwrap) {
1877                                 // The handshake finished in wrapNonAppData(...), we need to try call
1878                                 // unwrapNonAppData(...) as we may have some alert that we should read.
1879                                 //
1880                                 // This mimics what we would do when we are calling this method while in unwrap(...).
1881                                 unwrapNonAppData(ctx);
1882                             }
1883 
1884                             // Flush now as we may have written some data as part of the wrap call.
1885                             forceFlush(ctx);
1886                         } catch (Throwable e) {
1887                             taskError(e);
1888                             return;
1889                         }
1890 
1891                         // Now try to feed in more data that we have buffered.
1892                         tryDecodeAgain();
1893                         break;
1894 
1895                     default:
1896                         // Should never reach here as we handle all cases.
1897                         throw new AssertionError();
1898                 }
1899             } catch (Throwable cause) {
1900                 safeExceptionCaught(cause);
1901             }
1902         }
1903 
1904         void runComplete() {
1905             EventExecutor executor = ctx.executor();
1906             // Jump back on the EventExecutor. We do this even if we are already on the EventLoop to guard against
1907             // reentrancy issues. Failing to do so could lead to the situation of tryDecode(...) be called and so
1908             // channelRead(...) while still in the decode loop. In this case channelRead(...) might release the input
1909             // buffer if its empty which would then result in an IllegalReferenceCountException when we try to continue
1910             // decoding.
1911             //
1912             // See https://github.com/netty/netty-tcnative/issues/680
1913             executor.execute(new Runnable() {
1914                 @Override
1915                 public void run() {
1916                     resumeOnEventExecutor();
1917                 }
1918             });
1919         }
1920 
1921         @Override
1922         public void run() {
1923             try {
1924                 Runnable task = engine.getDelegatedTask();
1925                 if (task == null) {
1926                     // The task was processed in the meantime. Let's just return.
1927                     return;
1928                 }
1929                 if (task instanceof AsyncRunnable) {
1930                     AsyncRunnable asyncTask = (AsyncRunnable) task;
1931                     asyncTask.run(runCompleteTask);
1932                 } else {
1933                     task.run();
1934                     runComplete();
1935                 }
1936             } catch (final Throwable cause) {
1937                 handleException(cause);
1938             }
1939         }
1940 
1941         private void handleException(final Throwable cause) {
1942             EventExecutor executor = ctx.executor();
1943             if (executor.inEventLoop()) {
1944                 clearState(STATE_PROCESS_TASK);
1945                 safeExceptionCaught(cause);
1946             } else {
1947                 try {
1948                     executor.execute(new Runnable() {
1949                         @Override
1950                         public void run() {
1951                             clearState(STATE_PROCESS_TASK);
1952                             safeExceptionCaught(cause);
1953                         }
1954                     });
1955                 } catch (RejectedExecutionException ignore) {
1956                     clearState(STATE_PROCESS_TASK);
1957                     // the context itself will handle the rejected exception when try to schedule the operation so
1958                     // ignore the RejectedExecutionException
1959                     ctx.fireExceptionCaught(cause);
1960                 }
1961             }
1962         }
1963     }
1964 
1965     /**
1966      * Notify all the handshake futures about the successfully handshake
1967      * @return {@code true} if {@link #handshakePromise} was set successfully and a {@link SslHandshakeCompletionEvent}
1968      * was fired. {@code false} otherwise.
1969      */
1970     private boolean setHandshakeSuccess() throws SSLException {
1971         // Our control flow may invoke this method multiple times for a single FINISHED event. For example
1972         // wrapNonAppData may drain pendingUnencryptedWrites in wrap which transitions to handshake from FINISHED to
1973         // NOT_HANDSHAKING which invokes setHandshakeSuccess, and then wrapNonAppData also directly invokes this method.
1974         final SSLSession session = engine.getSession();
1975         if (resumptionController != null && !handshakePromise.isDone()) {
1976             try {
1977                 if (resumptionController.validateResumeIfNeeded(engine) && logger.isDebugEnabled()) {
1978                     logger.debug("{} Resumed and reauthenticated session", ctx.channel());
1979                 }
1980             } catch (CertificateException e) {
1981                 SSLHandshakeException exception = new SSLHandshakeException(e.getMessage());
1982                 exception.initCause(e);
1983                 throw exception;
1984             }
1985         }
1986         final boolean notified;
1987         if (notified = !handshakePromise.isDone() && handshakePromise.trySuccess(ctx.channel())) {
1988             if (logger.isDebugEnabled()) {
1989                 logger.debug(
1990                         "{} HANDSHAKEN: protocol:{} cipher suite:{}",
1991                         ctx.channel(),
1992                         session.getProtocol(),
1993                         session.getCipherSuite());
1994             }
1995             ctx.fireUserEventTriggered(SslHandshakeCompletionEvent.SUCCESS);
1996         }
1997         if (isStateSet(STATE_READ_DURING_HANDSHAKE)) {
1998             clearState(STATE_READ_DURING_HANDSHAKE);
1999             if (!ctx.channel().config().isAutoRead()) {
2000                 ctx.read();
2001             }
2002         }
2003         return notified;
2004     }
2005 
2006     /**
2007      * Notify all the handshake futures about the failure during the handshake.
2008      */
2009     private void setHandshakeFailure(ChannelHandlerContext ctx, Throwable cause) {
2010         setHandshakeFailure(ctx, cause, true, true, false);
2011     }
2012 
2013     /**
2014      * Notify all the handshake futures about the failure during the handshake.
2015      */
2016     private void setHandshakeFailure(ChannelHandlerContext ctx, Throwable cause, boolean closeInbound,
2017                                      boolean notify, boolean alwaysFlushAndClose) {
2018         try {
2019             // Release all resources such as internal buffers that SSLEngine is managing.
2020             setState(STATE_OUTBOUND_CLOSED);
2021             engine.closeOutbound();
2022 
2023             if (closeInbound) {
2024                 try {
2025                     engine.closeInbound();
2026                 } catch (SSLException e) {
2027                     if (logger.isDebugEnabled()) {
2028                         // only log in debug mode as it most likely harmless and latest chrome still trigger
2029                         // this all the time.
2030                         //
2031                         // See https://github.com/netty/netty/issues/1340
2032                         String msg = e.getMessage();
2033                         if (msg == null || !(msg.contains("possible truncation attack") ||
2034                                 msg.contains("closing inbound before receiving peer's close_notify"))) {
2035                             logger.debug("{} SSLEngine.closeInbound() raised an exception.", ctx.channel(), e);
2036                         }
2037                     }
2038                 }
2039             }
2040             if (handshakePromise.tryFailure(cause) || alwaysFlushAndClose) {
2041                 SslUtils.handleHandshakeFailure(ctx, cause, notify);
2042             }
2043         } finally {
2044             // Ensure we remove and fail all pending writes in all cases and so release memory quickly.
2045             releaseAndFailAll(ctx, cause);
2046         }
2047     }
2048 
2049     private void setHandshakeFailureTransportFailure(ChannelHandlerContext ctx, Throwable cause) {
2050         // If TLS control frames fail to write we are in an unknown state and may become out of
2051         // sync with our peer. We give up and close the channel. This will also take care of
2052         // cleaning up any outstanding state (e.g. handshake promise, queued unencrypted data).
2053         try {
2054             SSLException transportFailure = new SSLException("failure when writing TLS control frames", cause);
2055             releaseAndFailAll(ctx, transportFailure);
2056             if (handshakePromise.tryFailure(transportFailure)) {
2057                 ctx.fireUserEventTriggered(new SslHandshakeCompletionEvent(transportFailure));
2058             }
2059         } finally {
2060             ctx.close();
2061         }
2062     }
2063 
2064     private void releaseAndFailAll(ChannelHandlerContext ctx, Throwable cause) {
2065         if (resumptionController != null &&
2066                 (!engine.getSession().isValid() || cause instanceof SSLHandshakeException)) {
2067             resumptionController.remove(engine());
2068         }
2069         if (pendingUnencryptedWrites != null) {
2070             pendingUnencryptedWrites.releaseAndFailAll(ctx, cause);
2071         }
2072     }
2073 
2074     private void notifyClosePromise(Throwable cause) {
2075         if (cause == null) {
2076             if (sslClosePromise.trySuccess(ctx.channel())) {
2077                 ctx.fireUserEventTriggered(SslCloseCompletionEvent.SUCCESS);
2078             }
2079         } else {
2080             if (sslClosePromise.tryFailure(cause)) {
2081                 ctx.fireUserEventTriggered(new SslCloseCompletionEvent(cause));
2082             }
2083         }
2084     }
2085 
2086     private void closeOutboundAndChannel(
2087             final ChannelHandlerContext ctx, final ChannelPromise promise, boolean disconnect) throws Exception {
2088         setState(STATE_OUTBOUND_CLOSED);
2089         engine.closeOutbound();
2090 
2091         if (!ctx.channel().isActive()) {
2092             if (disconnect) {
2093                 ctx.disconnect(promise);
2094             } else {
2095                 ctx.close(promise);
2096             }
2097             return;
2098         }
2099 
2100         ChannelPromise closeNotifyPromise = ctx.newPromise();
2101         try {
2102             flush(ctx, closeNotifyPromise);
2103         } finally {
2104             if (!isStateSet(STATE_CLOSE_NOTIFY)) {
2105                 setState(STATE_CLOSE_NOTIFY);
2106                 // It's important that we do not pass the original ChannelPromise to safeClose(...) as when flush(....)
2107                 // throws an Exception it will be propagated to the AbstractChannelHandlerContext which will try
2108                 // to fail the promise because of this. This will then fail as it was already completed by
2109                 // safeClose(...). We create a new ChannelPromise and try to notify the original ChannelPromise
2110                 // once it is complete. If we fail to do so we just ignore it as in this case it was failed already
2111                 // because of a propagated Exception.
2112                 //
2113                 // See https://github.com/netty/netty/issues/5931
2114                 safeClose(ctx, closeNotifyPromise, PromiseNotifier.cascade(false, ctx.newPromise(), promise));
2115             } else {
2116                 /// We already handling the close_notify so just attach the promise to the sslClosePromise.
2117                 sslClosePromise.addListener(new FutureListener<Channel>() {
2118                     @Override
2119                     public void operationComplete(Future<Channel> future) {
2120                         promise.setSuccess();
2121                     }
2122                 });
2123             }
2124         }
2125     }
2126 
2127     private void flush(ChannelHandlerContext ctx, ChannelPromise promise) throws Exception {
2128         if (pendingUnencryptedWrites != null) {
2129             pendingUnencryptedWrites.add(Unpooled.EMPTY_BUFFER, promise);
2130         } else {
2131             promise.setFailure(newPendingWritesNullException());
2132         }
2133         flush(ctx);
2134     }
2135 
2136     @Override
2137     public void handlerAdded(final ChannelHandlerContext ctx) throws Exception {
2138         this.ctx = ctx;
2139         Channel channel = ctx.channel();
2140         pendingUnencryptedWrites = new SslHandlerCoalescingBufferQueue(channel, 16, engineType.wantsDirectBuffer) {
2141             @Override
2142             protected int wrapDataSize() {
2143                 return SslHandler.this.wrapDataSize;
2144             }
2145         };
2146 
2147         setOpensslEngineSocketFd(channel);
2148         boolean fastOpen = Boolean.TRUE.equals(channel.config().getOption(ChannelOption.TCP_FASTOPEN_CONNECT));
2149         boolean active = channel.isActive();
2150         if (active || fastOpen) {
2151             // Explicitly flush the handshake only if the channel is already active.
2152             // With TCP Fast Open, we write to the outbound buffer before the TCP connect is established.
2153             // The buffer will then be flushed as part of establishing the connection, saving us a round-trip.
2154             startHandshakeProcessing(active);
2155             // If we weren't able to include client_hello in the TCP SYN (e.g. no token, disabled at the OS) we have to
2156             // flush pending data in the outbound buffer later in channelActive().
2157             final ChannelOutboundBuffer outboundBuffer;
2158             if (fastOpen && ((outboundBuffer = channel.unsafe().outboundBuffer()) == null ||
2159                     outboundBuffer.totalPendingWriteBytes() > 0)) {
2160                 setState(STATE_NEEDS_FLUSH);
2161             }
2162         }
2163     }
2164 
2165     private void startHandshakeProcessing(boolean flushAtEnd) {
2166         if (!isStateSet(STATE_HANDSHAKE_STARTED)) {
2167             setState(STATE_HANDSHAKE_STARTED);
2168             if (engine.getUseClientMode()) {
2169                 // Begin the initial handshake.
2170                 // channelActive() event has been fired already, which means this.channelActive() will
2171                 // not be invoked. We have to initialize here instead.
2172                 handshake(flushAtEnd);
2173             }
2174             applyHandshakeTimeout();
2175         } else if (isStateSet(STATE_NEEDS_FLUSH)) {
2176             forceFlush(ctx);
2177         }
2178     }
2179 
2180     /**
2181      * Performs TLS renegotiation.
2182      */
2183     public Future<Channel> renegotiate() {
2184         ChannelHandlerContext ctx = this.ctx;
2185         if (ctx == null) {
2186             throw new IllegalStateException();
2187         }
2188 
2189         return renegotiate(ctx.executor().<Channel>newPromise());
2190     }
2191 
2192     /**
2193      * Performs TLS renegotiation.
2194      */
2195     public Future<Channel> renegotiate(final Promise<Channel> promise) {
2196         ObjectUtil.checkNotNull(promise, "promise");
2197 
2198         ChannelHandlerContext ctx = this.ctx;
2199         if (ctx == null) {
2200             throw new IllegalStateException();
2201         }
2202 
2203         EventExecutor executor = ctx.executor();
2204         if (!executor.inEventLoop()) {
2205             executor.execute(new Runnable() {
2206                 @Override
2207                 public void run() {
2208                     renegotiateOnEventLoop(promise);
2209                 }
2210             });
2211             return promise;
2212         }
2213 
2214         renegotiateOnEventLoop(promise);
2215         return promise;
2216     }
2217 
2218     private void renegotiateOnEventLoop(final Promise<Channel> newHandshakePromise) {
2219         final Promise<Channel> oldHandshakePromise = handshakePromise;
2220         if (!oldHandshakePromise.isDone()) {
2221             // There's no need to handshake because handshake is in progress already.
2222             // Merge the new promise into the old one.
2223             PromiseNotifier.cascade(oldHandshakePromise, newHandshakePromise);
2224         } else {
2225             handshakePromise = newHandshakePromise;
2226             handshake(true);
2227             applyHandshakeTimeout();
2228         }
2229     }
2230 
2231     /**
2232      * Performs TLS (re)negotiation.
2233      * @param flushAtEnd Set to {@code true} if the outbound buffer should be flushed (written to the network) at the
2234      *                  end. Set to {@code false} if the handshake will be flushed later, e.g. as part of TCP Fast Open
2235      *                  connect.
2236      */
2237     private void handshake(boolean flushAtEnd) {
2238         if (engine.getHandshakeStatus() != HandshakeStatus.NOT_HANDSHAKING) {
2239             // Not all SSLEngine implementations support calling beginHandshake multiple times while a handshake
2240             // is in progress. See https://github.com/netty/netty/issues/4718.
2241             return;
2242         }
2243         if (handshakePromise.isDone()) {
2244             // If the handshake is done already lets just return directly as there is no need to trigger it again.
2245             // This can happen if the handshake(...) was triggered before we called channelActive(...) by a
2246             // flush() that was triggered by a ChannelFutureListener that was added to the ChannelFuture returned
2247             // from the connect(...) method. In this case we will see the flush() happen before we had a chance to
2248             // call fireChannelActive() on the pipeline.
2249             return;
2250         }
2251 
2252         // Begin handshake.
2253         final ChannelHandlerContext ctx = this.ctx;
2254         try {
2255             engine.beginHandshake();
2256             wrapNonAppData(ctx, false);
2257         } catch (Throwable e) {
2258             setHandshakeFailure(ctx, e);
2259         } finally {
2260             if (flushAtEnd) {
2261                 forceFlush(ctx);
2262             }
2263         }
2264     }
2265 
2266     private void applyHandshakeTimeout() {
2267         final Promise<Channel> localHandshakePromise = this.handshakePromise;
2268 
2269         // Set timeout if necessary.
2270         final long handshakeTimeoutMillis = this.handshakeTimeoutMillis;
2271         if (handshakeTimeoutMillis <= 0 || localHandshakePromise.isDone()) {
2272             return;
2273         }
2274 
2275         final Future<?> timeoutFuture = ctx.executor().schedule(new Runnable() {
2276             @Override
2277             public void run() {
2278                 if (localHandshakePromise.isDone()) {
2279                     return;
2280                 }
2281                 SSLException exception =
2282                         new SslHandshakeTimeoutException("handshake timed out after " + handshakeTimeoutMillis + "ms");
2283                 try {
2284                     if (localHandshakePromise.tryFailure(exception)) {
2285                         SslUtils.handleHandshakeFailure(ctx, exception, true);
2286                     }
2287                 } finally {
2288                     releaseAndFailAll(ctx, exception);
2289                 }
2290             }
2291         }, handshakeTimeoutMillis, TimeUnit.MILLISECONDS);
2292 
2293         // Cancel the handshake timeout when handshake is finished.
2294         localHandshakePromise.addListener(new FutureListener<Channel>() {
2295             @Override
2296             public void operationComplete(Future<Channel> f) throws Exception {
2297                 timeoutFuture.cancel(false);
2298             }
2299         });
2300     }
2301 
2302     private void forceFlush(ChannelHandlerContext ctx) {
2303         clearState(STATE_NEEDS_FLUSH);
2304         ctx.flush();
2305     }
2306 
2307      private void setOpensslEngineSocketFd(Channel c) {
2308          if (c instanceof UnixChannel && engine instanceof ReferenceCountedOpenSslEngine) {
2309              ((ReferenceCountedOpenSslEngine) engine).bioSetFd(((UnixChannel) c).fd().intValue());
2310          }
2311      }
2312 
2313     /**
2314      * Issues an initial TLS handshake once connected when used in client-mode
2315      */
2316     @Override
2317     public void channelActive(final ChannelHandlerContext ctx) throws Exception {
2318         setOpensslEngineSocketFd(ctx.channel());
2319         if (!startTls) {
2320             startHandshakeProcessing(true);
2321         }
2322         ctx.fireChannelActive();
2323     }
2324 
2325     private void safeClose(
2326             final ChannelHandlerContext ctx, final ChannelFuture flushFuture,
2327             final ChannelPromise promise) {
2328         if (!ctx.channel().isActive()) {
2329             ctx.close(promise);
2330             return;
2331         }
2332 
2333         final Future<?> timeoutFuture;
2334         if (!flushFuture.isDone()) {
2335             long closeNotifyTimeout = closeNotifyFlushTimeoutMillis;
2336             if (closeNotifyTimeout > 0) {
2337                 // Force-close the connection if close_notify is not fully sent in time.
2338                 timeoutFuture = ctx.executor().schedule(new Runnable() {
2339                     @Override
2340                     public void run() {
2341                         // May be done in the meantime as cancel(...) is only best effort.
2342                         if (!flushFuture.isDone()) {
2343                             logger.warn("{} Last write attempt timed out; force-closing the connection.",
2344                                     ctx.channel());
2345                             addCloseListener(ctx.close(ctx.newPromise()), promise);
2346                         }
2347                     }
2348                 }, closeNotifyTimeout, TimeUnit.MILLISECONDS);
2349             } else {
2350                 timeoutFuture = null;
2351             }
2352         } else {
2353             timeoutFuture = null;
2354         }
2355 
2356         // Close the connection if close_notify is sent in time.
2357         flushFuture.addListener(new ChannelFutureListener() {
2358             @Override
2359             public void operationComplete(ChannelFuture f) {
2360                 if (timeoutFuture != null) {
2361                     timeoutFuture.cancel(false);
2362                 }
2363                 final long closeNotifyReadTimeout = closeNotifyReadTimeoutMillis;
2364                 if (closeNotifyReadTimeout <= 0) {
2365                     // Trigger the close in all cases to make sure the promise is notified
2366                     // See https://github.com/netty/netty/issues/2358
2367                     addCloseListener(ctx.close(ctx.newPromise()), promise);
2368                 } else {
2369                     final Future<?> closeNotifyReadTimeoutFuture;
2370 
2371                     if (!sslClosePromise.isDone()) {
2372                         closeNotifyReadTimeoutFuture = ctx.executor().schedule(new Runnable() {
2373                             @Override
2374                             public void run() {
2375                                 if (!sslClosePromise.isDone()) {
2376                                     logger.debug(
2377                                             "{} did not receive close_notify in {}ms; force-closing the connection.",
2378                                             ctx.channel(), closeNotifyReadTimeout);
2379 
2380                                     // Do the close now...
2381                                     addCloseListener(ctx.close(ctx.newPromise()), promise);
2382                                 }
2383                             }
2384                         }, closeNotifyReadTimeout, TimeUnit.MILLISECONDS);
2385                     } else {
2386                         closeNotifyReadTimeoutFuture = null;
2387                     }
2388 
2389                     // Do the close once the we received the close_notify.
2390                     sslClosePromise.addListener(new FutureListener<Channel>() {
2391                         @Override
2392                         public void operationComplete(Future<Channel> future) throws Exception {
2393                             if (closeNotifyReadTimeoutFuture != null) {
2394                                 closeNotifyReadTimeoutFuture.cancel(false);
2395                             }
2396                             addCloseListener(ctx.close(ctx.newPromise()), promise);
2397                         }
2398                     });
2399                 }
2400             }
2401         });
2402     }
2403 
2404     private static void addCloseListener(ChannelFuture future, ChannelPromise promise) {
2405         // We notify the promise in the ChannelPromiseNotifier as there is a "race" where the close(...) call
2406         // by the timeoutFuture and the close call in the flushFuture listener will be called. Because of
2407         // this we need to use trySuccess() and tryFailure(...) as otherwise we can cause an
2408         // IllegalStateException.
2409         // Also we not want to log if the notification happens as this is expected in some cases.
2410         // See https://github.com/netty/netty/issues/5598
2411         PromiseNotifier.cascade(false, future, promise);
2412     }
2413 
2414     /**
2415      * Always prefer a direct buffer when it's pooled, so that we reduce the number of memory copies
2416      * in {@link OpenSslEngine}.
2417      */
2418     private ByteBuf allocate(ChannelHandlerContext ctx, int capacity) {
2419         ByteBufAllocator alloc = ctx.alloc();
2420         if (engineType.wantsDirectBuffer) {
2421             return alloc.directBuffer(capacity);
2422         } else {
2423             return alloc.buffer(capacity);
2424         }
2425     }
2426 
2427     /**
2428      * Allocates an outbound network buffer for {@link SSLEngine#wrap(ByteBuffer, ByteBuffer)} which can encrypt
2429      * the specified amount of pending bytes.
2430      */
2431     private ByteBuf allocateOutNetBuf(ChannelHandlerContext ctx, int pendingBytes, int numComponents) {
2432         return engineType.allocateWrapBuffer(this, ctx.alloc(), pendingBytes, numComponents);
2433     }
2434 
2435     private boolean isStateSet(int bit) {
2436         return (state & bit) == bit;
2437     }
2438 
2439     private void setState(int bit) {
2440         state |= bit;
2441     }
2442 
2443     private void clearState(int bit) {
2444         state &= ~bit;
2445     }
2446 
2447     private final class LazyChannelPromise extends DefaultPromise<Channel> {
2448 
2449         @Override
2450         protected EventExecutor executor() {
2451             if (ctx == null) {
2452                 throw new IllegalStateException();
2453             }
2454             return ctx.executor();
2455         }
2456 
2457         @Override
2458         protected void checkDeadLock() {
2459             if (ctx == null) {
2460                 // If ctx is null the handlerAdded(...) callback was not called, in this case the checkDeadLock()
2461                 // method was called from another Thread then the one that is used by ctx.executor(). We need to
2462                 // guard against this as a user can see a race if handshakeFuture().sync() is called but the
2463                 // handlerAdded(..) method was not yet as it is called from the EventExecutor of the
2464                 // ChannelHandlerContext. If we not guard against this super.checkDeadLock() would cause an
2465                 // IllegalStateException when trying to call executor().
2466                 return;
2467             }
2468             super.checkDeadLock();
2469         }
2470     }
2471 }